K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

A = 710 + 79 _  78

A = 78 . ( 72 + 7 - 1 )

A = 78 . 55

A = 78 . 5 . 11 \(⋮\)11

Ta có :

710 + 79 - 78

= 78 ( 72 + 7 - 1 )

= 78 x 55 = 78 x 5 x 11 

\(\Rightarrow7^8\times5\times11⋮11\)

18 tháng 3 2019

\(B=\left(y^2-x^2\right)=\left(y-x\right)\left(y+x\right)\)

\(A-B=\left(y-x\right)\left(2x-y\right)\).Do \(\left(x-y\right)⋮11\Rightarrow-1\left(x-y\right)⋮11\Rightarrow y-x⋮11\)

Đặt y - x = 11k.Ta có: \(A-B=11k\left(2x-y\right)⋮11^{\left(đpcm\right)}\)

\(A=7^{10}+7^9-7^8\)

\(A=7^8\left(7^2+7-1\right)=7^8\cdot55\)

\(A=7^8\cdot5\cdot11\)

Vậy A chia hết cho 11

14 tháng 7 2016

A = 710 + 79 - 78

A = 78 . (72 + 7 - 1)

A = 78 . (49 + 7 - 1)

A = 78 . 55 

A = 78 . 5 . 11 chia hết cho 11

=> đpcm

3 tháng 3 2020

\(A=1+3^2+3^4+...+3^{100}\)

\(9A=3^2+3^4+3^6+...+3^{102}\)

\(8A=3^{102}-1\)

\(\Rightarrow8A-26=3^{102}-1-26=3^{102}-27\)

Vì \(3^{102}-27⋮3\)(1)

\(3^{102}-27⋮2\)(\(3^{102}-27\)là số chẵn )      (2)

\(3^{102}-27=9\left(3^{100}-3\right)\)\(\Rightarrow3^{102}-27⋮9\)(3)

Từ (1) , (2), (3) \(\Rightarrow8A-26⋮54\)\(\left(\left(2,3,9\right)=1\right)\)

vậy ...

3 tháng 3 2020

\(A=1+3^2+3^4+...+3^{100}\)

\(\Leftrightarrow3^2A=3^2\left(1+3^2+3^4+....+3^{100}\right)\)

\(\Leftrightarrow9A=3^2+3^4+3^6+...+3^{102}\)

\(\Leftrightarrow9A-A=\left(3^2+3^4+3^6+....+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)

\(\Leftrightarrow8A=3^{102}-1\)

\(\Leftrightarrow8A-26=3^{102}-1-26=3^{102}-27\)

Ta có: \(3^{102}⋮3;27⋮3\Rightarrow3^{102}-27⋮3\left(1\right)\)

\(3^{102}-27⋮2\left(2\right)\)(3^102 -27 là số lẻ)

\(3^{102}-27=\left(3^2\right)^{51}-27=9^{51}-27⋮9\left(3\right)\)

(1)(2)(3) => 8A-26 chia hết cho 54 (đpcm)

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6