Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ \(\frac{x}{xy+x+1}\)+\(\frac{y}{yz+y+1}\)+\(\frac{z}{xz+z+1}\)
=\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xyz+xy+x}\)+\(\frac{xyz}{x^2yz+xyz+xy}\)
=\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xy+x+1}\)+\(\frac{1}{xy+x+1}\)(vì xyz=1)
=\(\frac{x+xy+1}{xy+x+1}\)
= 1
Vì xyz = 1 nên x = y = z = 1
=> \(A=\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)
\(A=\frac{x}{xy+x+1}+\frac{y}{y+1+yz}+\frac{z}{1+z+xz}\)
\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+xyz}+\frac{xyz}{xy+xyz+x^2yz}\)
\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+1}+\frac{1}{xy+1+x}\)
\(=\frac{xy+x+1}{xy+x+1}=1\)
\(\frac{x}{xy+x+1}+\frac{xy}{yx+x+xyz}+\frac{xyz}{xy+xyz+x^2yz}\)
\(\frac{x}{xy+x+1}+\frac{xy}{yx+x+1}+\frac{1}{xy+1+x}\)
\(\frac{x+xy+1}{xy+x+1}=1\)
Ta có: \(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
\(A=\frac{xz}{xyz+xz+z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}\)
\(A=\frac{xz}{1+xz+z}+\frac{xyz}{z+1+xz}+\frac{z}{xz+z+1}\)
\(A=\frac{xyz+xz+1}{xyz+xz+1}\)
\(A=1\)
Vậy \(A=1\)
A=\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xyz+xy+x}\)+\(\frac{xyz}{x^2yz+xyz+xy}\)
A=\(\frac{x}{xy+x+1}\)+\(\frac{xy}{1+xy+x}\)+\(\frac{1}{x+1+xy}\)
A=1
\(A=\dfrac{x}{xy+x+1}+\dfrac{y}{y+1+yz}+\dfrac{z}{1+z+xz}\)
\(=\dfrac{x}{xy+x+xyz}+\dfrac{y}{y+1+yz}+\dfrac{yz}{1+yz+z}\)
\(=\dfrac{x}{x\left(y+1+yz\right)}+\dfrac{y}{y+1+yz}+\dfrac{yz}{1+yz+y}\)
\(=\dfrac{1}{y+1+yz}+\dfrac{y}{y+1+yz}+\dfrac{yz}{1+yz+y}\)
\(=\dfrac{1+y+yz}{y+1+yz}=1.\)
(x/ 1+x+xy)+ (y/ 1+y+yz) + ( z/ 1+z+zx)
\(=\frac{1}{\left(yz+1+y\right)}+\frac{y}{\left(1+y+yz\right)}+\frac{yz}{\left(y+yz+xyz\right)}\)
\(=\frac{1}{\left(yz+1+y\right)}+\frac{y}{\left(1+y+yz\right)}+\frac{yz}{\left(y+yz+1\right)}\)
\(=\frac{\left(1+y+yz\right)}{\left(y+yz+1\right)}=1\)
Vậy (x/ 1+x+xy)+ (y/ 1+y+yz) + ( z/ 1+z+zx)=1(Đpcm)
\(A=\frac{x}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{z}{xz+z+xyz}\)
\(=\frac{1+y+yz}{y+yz+1}=1\)
mình vô tri quá :")