Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Tính độ dài đoạn thẳng AB
Áp dụng định lí Pi - ta -go cho Δ ABH vuông tại H có :
\(AB^2=AH^2+BH^2=12^2+9^2=144+81=225\)
=> \(AB=\sqrt{225}=15\) ( cm )
*Tính độ dài đoạn thẳng AC
Ta có : \(HC=BC-BH=25-9=16\left(cm\right)\)
Áp dụng định lí Pi - ta - go cho Δ AHC vuông tại H có :
\(AC^2=AH^2+HC^2=12^2+16^2=144+256=400\)
=> \(AC=\sqrt{400}=20\left(cm\right)\)
* Xét tam giác ABC có : \(BC^2=25^2=625\)
mặt khác : \(AB^2+AC^2=15^2+20^2=225+400=625\)
=> Δ ABC vuông tại A
Hình vẽ :
Bai 1:
Ap dung dinh li Py-ta-go vao tam giac AHB ta co:
AH^2+BH^2=AB^2
=>12^2+BH^2=13^2
=>HB=13^2-12^2=25
Tuong tu voi tam giac AHC
=>AC=20
=>BC=25+16=41
Áp dụng định lí Pi-ta-go trong tam giác ABC vuông tại A :
AB2 + AC2 = BC2
⇒ AC = \(\sqrt{13^2-12^2}\) = 5(cm)
M là trung điểm của AB ⇒ AM = \(\dfrac{1}{2}AB = 6(cm)\)
Áp dung định lí Pi-ta-go trong tam giác AMC vuông tại A :
AM2 + AC2 = CM2
⇒ CM = \(\sqrt{6^2+5^2}\) = \(\sqrt{61}\)(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=13^2-12^2=25\)
\(\Leftrightarrow AC=\sqrt{25}=5\left(cm\right)\)
Ta có: M là trung điểm của AB(gt)
nên \(AM=\dfrac{AB}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACM vuông tại A, ta được:
\(CM^2=AC^2+AM^2\)
\(\Leftrightarrow CM^2=5^2+6^2=61\)
hay \(CM=\sqrt{61}cm\)
Vậy: \(CM=\sqrt{61}cm\)
ban tu ve hinh nha:
xet tam giacAMB va tam giaAMC
AB=AC
AM chung
M1=m2
suy ra hai tam giacAmb va amc bang nhau.
a) Vì trong tam giác cân đường cao đông thời là trung tuyến ;trung trực ,...
Nên AH là đường cao đồng thời là trugn tuyến ứng với canh BC
=>HB=HC
b) Ta có HB+HC=BC
=>HB=HC=BC/2=8/2=4cm
Ap dụng định lí Py-ta-go vào tam giác BAH ta có
AH2+BH2=AB2
AH2=AB2-BH2
AH2= 52-42
AH2=25-16=9
=>AH=3
C)Xét tam giác vuông BDH và CEH ta có
HB=HC(theo câu a)
Góc B=C(Vì tam giác ABC cân ở A)
=>tam giác BDH=CEH(ch-gn)
=>HD=HE(tương ứng)
Vậy tam giác HDE có HD=HE nên cân ở H
+ Có AH là đường cao ứng với đáy BC của tam giác ABC nên diện tích tam giác ABC là
S = 1 2 A H . B C = 120
Suy ra BC = (2. 120) : AH = 240 : 12 = 20 cm
+ Lại có: BH + HC = BC
Suy ra BH = BC – HC = 20 – 12 = 8 cm.
Chọn đáp án A
a: BC=căn 9^2+12^2=15cm
b: góc DAC+góc BAD=90 độ
góc CDA+góc HAD=90 độ
mà góc BAD=góc HAD
nên góc CAD=góc CDA
=>ΔCAD cân tại C
c: ΔCAD cân tại C
mà CK là phân giác
nên CK vuông góc AD
Xét ΔCAD có
CK,AH là đường cao
CK cắt AH tại F
=>F là trực tâm
=>DF vuông góc AC
=>DF//AB
e: S ABC=1/2*AB*AC=1/2*AH*BC
=>AH*BC=AB*AC