Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a + 4b chia hết cho 13 => 3.(a + 4b )
=> 3a + 12b
Xét tổng :
( 3a + 12b ) + ( 10a +b )
= 3a +10a +12b +b
= 13a +13b ( chia hết cho 13 )
Mà 3a + 12b chia hết cho 13 => 10a + b chia hết cho 13
Nếu (a + 4b) chia hết 13 thì 10.(a + 4b) cũng chia hết cho 13
Vì 39b chia hết cho 13
Nên 10.(a + 4b) - 39b cũng chia hết cho 13
Chứng tỏ 10a + b chia hết cho 13
(39b là mình lấy từ 10.(a + 4b) -10a + b đó bạn)
Nếu (a + 4b) chia hết 13 thì 10.(a + 4b) cũng chia hết cho 13
Vì 39b chia hết cho 13
Nên 10.(a + 4b) - 39b cũng chia hết cho 13
Chứng tỏ 10a + b chia hết cho 13
(39b là mình lấy từ 10.(a + 4b) -10a + b )
a) Ta có : 51n=\(\overline{...1}\)
47102=472.(474)25=\(\left(\overline{...9}\right).\left(\overline{...1}\right)=\overline{...9}\)
\(\Rightarrow51^n+47^{102}=\left(\overline{...1}\right)+\left(\overline{...9}\right)=\overline{...0}⋮10\)
Vậy 51n+47102\(⋮\)10.
b) Ta có : \(17^5=17.17^4=17.\left(\overline{...1}\right)=\overline{...7}\)
\(24^4=\overline{...6}\)
\(13^{21}=13.\left(13^4\right)^5=13.\left(\overline{...1}\right)=\overline{...3}\)
\(\Rightarrow17^5+24^4-13^{21}=\left(\overline{...7}\right)+\left(\overline{...6}\right)-\left(\overline{...3}\right)=\overline{...0}⋮10\)
Vậy 175+244+1321\(⋮\)10
Ta có:
3 . (a + 4b) + (10a + b) = 3a + 12b + 10a + b = (3a + 10a) + (12b + b) = 13a + 13b = 13 . (a + b) chia hết cho 13.
Mà a + 4b chia hết cho 13 nên 3 . (a + 4b) chia hết cho 13 mà tổng 3 . (a + 4b) + (10a + b) cũng chia hết cho 13
suy ra 10a + b chia hết cho 13
Ta có:
a + 4b chia hết cho 13
=>10.(a + 4b) chia hết cho 13
=>10a+40b chia hết cho 13
Mà 39b chia hết cho 13
=> (10a+40b)-39b chia hết cho 13
=>10a+b chia hết cho 13
Vậy 10a+b chia hết cho 13
Ta có : 13a + 13b chia hết cho 13 và a + 4b chia hết cho 13 => 3a + 12b chia hết cho 13
=> ( 13a + 13b ) - ( 3a + 12b ) chia hết cho 13
=> 10a + b chia hết cho 13
=> đpcm
cho biết 7a+2b chia hết cho 13 và a và b là số tự nhiên
chứng minh rằng 10a+b cũng chia hết cho 13
10a + b chia hết cho 13 khi a = 1 và b = 3
a = 2 đồng thời b = a x 3
a = 3 thì b = a x 3 = 3 x 3 = 9
b luôn = a x 3
xét a + 4 b = a + 4 x 3a
= a + 12a = 13a
và 13a luôn chia hết cho 13
vậy là với b = a x3 thì 10a + b chia hết cho 13 và a + 4b cũng chia hết cho 13
10a + b chia hết cho 13
10a + b + 39b chia hết cho 13
10a + 40b chia hết cho 13
10(a + 4b) chia hết cho 13
Vì UCLN(10 ; 13) = 1
Do đó a + 4b chia hết cho 13