Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điều kiện xác định : \(x\ge0;x\ne1\)
\(P=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{10\sqrt{x}-\left(2x-5\sqrt{x}+3\right)-\left(x+5\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-3x+10\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{\left(\sqrt{x}-1\right)\left(7-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{7-3\sqrt{x}}{\sqrt{x}+4}\)
b) Ta có : \(P=\frac{7-3\sqrt{x}}{\sqrt{x}+4}=\frac{-3\left(\sqrt{x}+4\right)+19}{\sqrt{x}+4}=\frac{19}{\sqrt{x}+4}-3>-3\)
c) Theo b) : \(P=\frac{19}{\sqrt{x}+4}-3\)
Ta có : \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+4\ge4\Leftrightarrow\frac{19}{\sqrt{x}+4}\le\frac{19}{4}\Leftrightarrow\frac{19}{\sqrt{x}+4}-3\le\frac{7}{4}\)
\(\Rightarrow P\le\frac{7}{4}\) . Dấu "=" xảy ra khi x = 0
Vậy P đạt giá trị lớn nhất bằng \(\frac{7}{4}\) , khi x = 0
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
vãi
a/ \(B=\left(\frac{1}{\sqrt{x}+2}+\frac{7}{x-4}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-2}-1\right)\)
=> \(B=\left(\frac{1}{\sqrt{x}+2}+\frac{7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-2}\right)\)
=> \(B=\frac{\sqrt{x}+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{1}{\sqrt{x}-2}\)
=> \(B=\frac{\sqrt{x}+5}{\sqrt{x}+2}\)
b/ B>2 <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}>2\) <=> \(\sqrt{x}+5>2\sqrt{x}+4\)
<=> \(1>\sqrt{x}\)=> \(-1\le x\le1\)
c/ \(B=\frac{\sqrt{x}+5}{\sqrt{x}+2}=\frac{\sqrt{x}+2+3}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}\)
Để Bmax thì \(\sqrt{x}+2\) đạt giá trị nhỏ nhất . Do \(\sqrt{x}+2\ge2\)=> Đạt nhỏ nhất khi x=0
Khí đó giá trị lớn nhất của B là: \(1+\frac{3}{2}=\frac{5}{2}\)Đạt được khi x=0
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)