K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2022

\(B< -1\\ \Leftrightarrow\dfrac{x+5}{-2}< -1\\ \Rightarrow x+5>2\\ \Rightarrow x>-3\)

 

Để B<-1 thì x+5<2

=>x<-3

21 tháng 1 2022

 

 

 

 

a)B=x+5 +x +x-5/x(x-5)=3x/x(x-5)=3/x-5

        b)đkxđ   x khác 5

21 tháng 1 2022

 

a)B=x+5 +x +x-5/x(x-5)=3x/x(x-5)=3/x-5

        b)đkxđ   x khác 5

7 tháng 1 2022

Để \(B< 0\) mà 30>0\(\Rightarrow x-2< 0\Rightarrow x< 2\)

7 tháng 1 2022

x\(\le\)31 (\(\forall\)x)
và x\(\notin\left\{-4,4\right\}\) thì B<0

a: \(B=\dfrac{3x\left(2x-3\right)-4\left(2x+3\right)-4x^2+23x+12}{\left(2x-3\right)\left(2x+3\right)}\cdot\dfrac{2x+3}{x+3}\)

\(=\dfrac{6x^2-9x-8x-12-4x^2+23x+12}{2x-3}\cdot\dfrac{1}{x+3}\)

\(=\dfrac{2x^2+6x}{\left(2x-3\right)}\cdot\dfrac{1}{x+3}=\dfrac{2x}{2x-3}\)

b: 2x^2+7x+3=0

=>(2x+3)(x+2)=0

=>x=-3/2(loại) hoặc x=-2(nhận)

Khi x=-2 thì \(A=\dfrac{2\cdot\left(-2\right)}{-2-3}=\dfrac{-4}{-7}=\dfrac{4}{7}\)

d: |B|<1

=>B>-1 và B<1

=>B+1>0 và B-1<0

=>\(\left\{{}\begin{matrix}\dfrac{2x+2x-3}{2x-3}>0\\\dfrac{2x-2x+3}{2x-3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3< 0\\\dfrac{4x-3}{2x-3}>0\end{matrix}\right.\Leftrightarrow x< \dfrac{3}{4}\)

30 tháng 4 2023

CẢM ƠN BẠN NHA

 

7 tháng 9 2023

a) \(A=\dfrac{x^2+3x}{x^2-25}+\dfrac{1}{x+5};B=\dfrac{x-5}{x+2}\left(x\ne\pm5;-2\right)\)

Khi \(x=9\) thì :

\(B=\dfrac{9-5}{9+2}=\dfrac{4}{11}\)

b) \(P=A.B\)

\(\Leftrightarrow P=\left[\dfrac{x^2+3x}{x^2-25}+\dfrac{1}{x+5}\right].\dfrac{x-5}{x+2}\)

\(\Leftrightarrow P=\left[\dfrac{x^2+3x}{\left(x+5\right)\left(x-5\right)}+\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}\right].\dfrac{x-5}{x+2}\)

\(\Leftrightarrow P=\left[\dfrac{x^2+4x-5}{\left(x+5\right)\left(x-5\right)}\right].\dfrac{x-5}{x+2}\)

\(\Leftrightarrow P=\left[\dfrac{x^2+5x-x-5}{x+5}\right].\dfrac{1}{x+2}\)

\(\Leftrightarrow P=\left[\dfrac{x\left(x+5\right)-\left(x+5\right)}{x+5}\right].\dfrac{1}{x+2}\)

\(\Leftrightarrow P=\left[\dfrac{\left(x+5\right)\left(x-1\right)}{x+5}\right].\dfrac{1}{x+2}\)

\(\Leftrightarrow P=\dfrac{x-1}{x+2}\)

c) Theo đề bài để

\(P=\dfrac{x-1}{x+2}>\dfrac{1}{3}\left(x>-2\right)\)

\(\Leftrightarrow3\left(x-1\right)>x+2\)

\(\Leftrightarrow3x-3>x+2\)

\(\Leftrightarrow2x>5\)

\(\Leftrightarrow x>\dfrac{5}{2}\left(thỏa,đk:x>-2\right)\)

7 tháng 9 2023

a) Để tính giá trị của B khi x = 9, ta thay x = 9 vào biểu thức B: B = (x - 5)/(x + 2) - 5/(x + 2) = (9 - 5)/(9 + 2) - 5/(9 + 2) = 4/11 - 5/11 = -1/11

Vậy giá trị của B khi x = 9 là -1/11.

b) Để rút gọn biểu thức P = A.B, ta nhân các thành phần tương ứng của A và B: P = (x^2 + 3x)/(x^2 - 25 + 1) * (x - 5)/(x + 2) = (x(x + 3))/(x^2 - 24) * (x - 5)/(x + 2) = (x(x + 3)(x - 5))/(x^2 - 24)(x + 2)

Vậy biểu thức P được rút gọn thành P = (x(x + 3)(x - 5))/(x^2 - 24)(x + 2).

c) Để tìm giá trị của x khi P > 13 với x > -2, ta giải phương trình: (x(x + 3)(x - 5))/(x^2 - 24)(x + 2) > 13

2 tháng 5 2018

khocroikhocroikhocroihiha

2 tháng 5 2018

Câu 1 :

a) Rút gọn P :

\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)

\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)

\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)

19 tháng 12 2020

a) ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

Ta có: \(B=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x^2+10x}\)

\(=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}-\dfrac{5x-50}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2+2x^2-50-5x+50}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)

\(=\dfrac{x^2+5x-x-5}{2\left(x+5\right)}\)

\(=\dfrac{x\left(x+5\right)-\left(x+5\right)}{2\left(x+5\right)}\)

\(=\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}\)

\(=\dfrac{x-1}{2}\)

b) Để B=0 thì \(\dfrac{x-1}{2}=0\)

\(\Leftrightarrow x-1=0\)

hay x=1(nhận)

Vậy: Để B=0 thì x=1

Để \(B=\dfrac{1}{4}\) thì \(\dfrac{x-1}{2}=\dfrac{1}{4}\)

\(\Leftrightarrow4\left(x-1\right)=2\)

\(\Leftrightarrow4x-4=2\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)(nhận)

Vậy: Để \(B=\dfrac{1}{4}\) thì \(x=\dfrac{3}{2}\)

c) Thay x=3 vào biểu thức \(B=\dfrac{x-1}{2}\), ta được:

\(B=\dfrac{3-1}{2}=\dfrac{2}{2}=1\)

Vậy: Khi x=3 thì B=1

d) Để B<0 thì \(\dfrac{x-1}{2}< 0\)

\(\Leftrightarrow x-1< 0\)

\(\Leftrightarrow x< 1\)

Kết hợp ĐKXĐ, ta được: 

\(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)

Vậy: Để B<0 thì \(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)

Để B>0 thì \(\dfrac{x-1}{2}>0\)

\(\Leftrightarrow x-1>0\)

hay x>1

Kết hợp ĐKXĐ, ta được: x>1

Vậy: Để B>0 thì x>1

6 tháng 5 2023

`a)` Thay `x=2` vào `B` có: `B=[-10]/[2-4]=5`

`b)` Với `x ne -1;x ne -5` có:

`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+1)(x+5)]`

`A=[x^2+x+2x+2-5x-1-x-5]/[(x+1)(x+5)]`

`A=[x^2-3x-4]/[(x+1)(x+5)]`

`A=[(x+1)(x-4)]/[(x+1)(x+5)]`

`A=[x-4]/[x+5]`

`c)` Với `x ne -5; x ne -1; x ne 4` có:

`P=A.B=[x-4]/[x+5].[-10]/[x-4]`

           `=[-10]/[x+5]`

Để `P` nguyên `<=>[-10]/[x+5] in ZZ`

    `=>x+5 in Ư_{-10}`

Mà `Ư_{-10}={+-1;+-2;+-5;+-10}`

`=>x={-4;-6;-3;-7;0;-10;5;-15}` (t/m đk)

17 tháng 1 2018

\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\) ( Chữa đề nhé.)

a) \(ĐKXĐ:x\ne-3;x\ne2\)

\(\text{Với }x\ne-3;x\ne2,\text{ ta có: }A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\\ =\dfrac{x+2}{x+3}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{1}{x-2}\\ =\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{\left(x+3\right)\left(x-4\right)}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x-4}{x-2}\\ \text{Vậy }A=\dfrac{x-4}{x-2}\text{ với }x\ne-3;x\ne2\)

b) Lập bảng xét dấu:

x x-4 x-2 x-4 2 4 0 0 x-2 _ _ + _ + + 0 + _ +

\(\Rightarrow\left[{}\begin{matrix}x< 2\\x>4\end{matrix}\right.\)

Vậy để \(A>0\) thì \(x< 2\) hoặc \(x>4\)

c) \(\text{Với }x\ne-3;x\ne2\)

\(\text{Ta có : }A=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}\\ =\dfrac{x-2}{x-2}-\dfrac{2}{x-2}=1-\dfrac{2}{x-2}\)

\(\Rightarrow\) Để A nhận giá trị nguyên

thì \(\Rightarrow\dfrac{2}{x-2}\in Z\)

\(\Rightarrow2⋮x-2\\ \Rightarrow x-2\inƯ_{\left(2\right)}\)

\(Ư_{\left(2\right)}=\left\{\pm1;\pm2\right\}\)

Lập bảng giá trị:

\(x-2\) \(-2\) \(-1\) \(1\) \(2\)
\(x\) \(0\left(TM\right)\) \(1\left(TM\right)\) \(3\left(TM\right)\) \(4\left(TM\right)\)

\(\Rightarrow x\in\left\{-2;-1;1;2\right\}\)

Vậy với \(x\in\left\{-2;-1;1;2\right\}\)

thì \(A\in Z\)

17 tháng 1 2018

Câu 2:

a) \(ĐKXĐ:x\ne\dfrac{3}{2};x\ne1\)

\(\text{Với }x\ne\dfrac{3}{2};x\ne1,\text{ ta có : }B=\left(\dfrac{2x}{2x^2-5x+3}-\dfrac{5}{2x-3}\right):\left(3+\dfrac{2}{1-x}\right)\\ =\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}\right]:\left(\dfrac{3\left(1-x\right)}{1-x}+\dfrac{2}{1-x}\right)\\ =\dfrac{2x-5x+5}{\left(2x-3\right)\left(x-1\right)}:\dfrac{3-3x+2}{\left(1-x\right)}\\ =\dfrac{\left(-3x+5\right)\cdot\left(1-x\right)}{\left(2x-3\right)\left(x-1\right)\cdot\left(-3x+5\right)}\\ =-\dfrac{1}{2x-3}\)

Vậy \(B=-\dfrac{1}{2x-3}\) với \(x\ne\dfrac{3}{2};x\ne1\)

b) \(\text{Với }x\ne\dfrac{3}{2};x\ne1\)

Để \(B=\dfrac{1}{x^2}\)

\(\text{thì }\Rightarrow\dfrac{-1}{2x-3}=\dfrac{1}{x^2}\\ \Rightarrow2x-3=-x^2\\ \Leftrightarrow2x-3+x^2=0\\ \Leftrightarrow x^2-3x+x-3=0\\ \Leftrightarrow\left(x^2-3x\right)+\left(x-3\right)=0\\ \Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\left(TM\right)\)

Vậy với \(x=-1;x=3\) thì \(B=\dfrac{1}{x^2}\)