Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A=\(\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b) Thay x=3+2\(\sqrt{2}\)
A=\(\dfrac{\sqrt{3+2\sqrt{2}}-2}{\sqrt{3+2\sqrt{2}}}\)=\(\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2-2}}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)=\(\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}\)
A=\(\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\)
c)Ta có \(\dfrac{\sqrt{x}-2}{\sqrt{x}}=1-\dfrac{2}{\sqrt{x}}\)>0
\(\Rightarrow\dfrac{2}{\sqrt{x}}\)<1\(\Rightarrow\sqrt{x}\)>2\(\Rightarrow x>4\)
\(a,A=\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{x-2-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
`a)` Với `x >= 0,x ne 4` có:
`Q=[2(2-\sqrt{x})+2+\sqrt{x}-2\sqrt{x}]/[(2+\sqrt{x})(2-\sqrt{x})]`
`Q=[4-2\sqrt{x}+2+\sqrt{x}-2\sqrt{x}]/[(2+\sqrt{x})(2-\sqrt{x})]`
`Q=[6-3\sqrt{x}]/[(2+\sqrt{x})(2-\sqrt{x})]`
`Q=3/[2+\sqrt{x}]`
`b)` Với `x >= 0,x ne 4` có:
`Q=6/5<=>3/[2+\sqrt{x}]=6/5`
`=>12+6\sqrt{x}=15`
`<=>x=1/4` (t/m)
`c)` Với `x >= 0,x ne 4` có:
`Q in Z<=>3/[2+\sqrt{x}] in ZZ`
`=>2+\sqrt{x} in Ư_{3}`
Mà `Ư_{3}={+-1;+-3}`
`@2+\sqrt{x}=1=>\sqrt{x}=-1` (Vô lý)
`@2+\sqrt{x}=-1=>\sqrt{x}=-3` (Vô lý)
`@2+\sqrt{x}=-2=>\sqrt{x}=-4` (Vô lý)
`@2+\sqrt{x}=2=>\sqrt{x}=0<=>x=0` (t/m)
Vậy `x=0`
ĐKXĐ: \(x>0;x\ne1\)
\(Q=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{1}{\sqrt{x}}\)
\(=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right).\dfrac{1}{\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{1}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{1}{\sqrt{x}}=\dfrac{2}{x-1}\)
b.
Để \(Q\in Z\Rightarrow2⋮\left(x-1\right)\Rightarrow x-1=Ư\left(2\right)\)
\(\Rightarrow x-1=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x=\left\{-1;0;2;3\right\}\)
Kết hợp ĐKXĐ: \(\Rightarrow x=\left\{2;3\right\}\)
(Đáp án của đề bài đã quên mất ĐKXĐ ban đầu nên ko loại 2 giá trị \(x=-1;x=0\))
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
a.
\(A=\left[\frac{x+2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}+\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(x+\sqrt{x}+1)}\right].\frac{2}{\sqrt{x}-1}\)
\(=\frac{x+2+x-\sqrt{x}-(x+\sqrt{x}+1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}.\frac{2}{\sqrt{x}-1}\)
\(=\frac{2(x-2\sqrt{x}+1)}{(\sqrt{x}-1)^2(x+\sqrt{x}+1)}=\frac{2(\sqrt{x}-1)^2}{(\sqrt{x}-1)^2(x+\sqrt{x}+1)}=\frac{2}{x+\sqrt{x}+1}\)
b.
Ta thấy với $x\geq 0 ; x\neq 1$ thì $x+\sqrt{x}+1\geq 1$
$\Rightarrow A=\frac{2}{x+\sqrt{x}+1}\leq 2$
Vậy $A$ đạt max bằng $2$ khi $x=0$
\(\left(đk:x\ne\pm1\right)\)
\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\left(\dfrac{x-\sqrt{x}+2\sqrt{x}-2-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}}{x-1}\)
a) ĐKXĐ: \(x\ge0;x\ne9\), kết quả B sau khi rút: \(B=\dfrac{-x+\sqrt{x}-4}{x-\sqrt{x}-6}\) (mình đã làm rồi nhưng rất tiếc lại ko đc gửi đi, bạn cứ làm sẽ ra). b) ta có: \(B=\dfrac{-x+\sqrt{x}-4}{x-\sqrt{x}-6}=-1-\dfrac{10}{x-\sqrt{x}-6}\) , do đó B nguyên khi \(\dfrac{10}{x-\sqrt{x}-6}\) là số nguyên, tức \(x-\sqrt{x}-6\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\) (Chắc sai r bạn)
T làm ra: \(B=\dfrac{x-\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\) ,b có thể giải chi tiết ko?