Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=\left(m-2\right)x^2+2\left(4-3m\right)x+10m-11\le0\)
TH1: \(m=2\)
Bất phương trình tương đương \(-4x+9\le0\Leftrightarrow x\ge\dfrac{9}{4}\)
\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán
TH2: \(m>2\)
\(f\left(x\right)\le0\forall x\in\left(x_1;x_2\right)\)
\(\Rightarrow m>2\) không thỏa mãn yêu cầu bài toán
TH3: \(m< 2\)
+) \(\Delta=-m^2+7m-6\le0\Leftrightarrow\left[{}\begin{matrix}m\le1\\m\ge6\end{matrix}\right.\)
\(f\left(x\right)\le0\forall x\in R\Rightarrow f\left(x\right)\le0\forall x< -4\)
Kết hợp điều kiện \(m< 2\) ta được \(m\le1\) thỏa mãn yêu cầu bài toán
+) \(\Delta=-m^2+7m-6>0\Leftrightarrow1< m< 6\)
Yêu cầu bài toán thỏa mãn khi \(f\left(x\right)\) có hai nghiệm phân biệt thỏa mãn \(x_2>x_1\ge-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right).f\left(-4\right)\ge0\\\dfrac{3m-4}{m-2}>-4\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Vậy \(S=(-\infty;1]\)
Không biết đúng chưa, bài này phức tạp quá.
Câu 2 bạn ghi thiếu đề
Câu 1:
\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)
\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)
BPT đã cho vô nghiệm khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(m-1\right)^2-\left(4m+8\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow m^2-6m-7\le0\)
\(\Rightarrow-1\le m\le7\)
\(\Rightarrow m=\left\{-1;0;1;2;3;4;5;6;7\right\}\)
3:
x^2-2x+1-m^2<=0
=>(x-1)^2-m^2<=0
=>(x-1)^2<=m^2
=>-m<=x-1<=m
=>-m+1<=x<=m+1
mà x thuộc [-1;2]
nên -m+1>=-1 và m+1<=2
=>-m>=-2 và m<=1
=>m<=2 và m<=1
=>m<=1
Lời giải:
$f(x)=m^2(x^4-1)+m(x^2-1)-6(x-1)=(x-1)[m^2(x+1)(x^2+1)+m(x+1)-6]$
Để $f(x)\geq 0$ với mọi $x\in\mathbb{R}$ thì:
$m^2(x+1)(x^2+1)+m(x+1)-6=Q(x)(x-1)^k$ với $k$ là số lẻ
$\Rightarrow h(x)=m^2(x+1)(x^2+1)+m(x+1)-6\vdots x-1$
$\Rightarrow h(1)=0$
$\Leftrightarrow 4m^2+2m-6=0$
$\Leftrightarrow 2m^2+m-3=0$
$\Leftrightarrow (m-1)(2m+3)=0\Rightarrow m=1$ hoặc $m=\frac{-3}{2}$
Thay các giá trị trên vào $f(x)$ ban đầu thì $m\in \left\{1; \frac{-3}{2}\right\}$
Tổng các giá trị của các phần tử thuộc $S$: $1+\frac{-3}{2}=\frac{-1}{2}$