K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2021

X3 + Y3 + Z3 = 3XYZ

<=> X3 + Y3 + Z3 - 3XYZ = 0

<=> ( X3 + Y3 ) + Z3 - 3XYZ = 0

<=> ( X + Y )3 - 3XY( X + Y ) + Z3 - 3XYZ = 0

<=> [ ( X + Y )3 + Z3 ] - 3XY( X + Y + Z ) = 0

<=> ( X + Y + Z )[ ( X + Y )2 - ( X + Y ).Z + Z2 - 3XY ] = 0

<=> ( X + Y + Z )( X2 + Y2 + Z2 - XY - YZ - XZ ) = 0

<=> \(\orbr{\begin{cases}X+Y+Z=0\\X^2+Y^2+Z^2-XY-YZ-XZ=0\end{cases}}\)

+) X + Y + Z = 0 => \(\hept{\begin{cases}X+Y=-Z\\Y+Z=-X\\X+Z=-Y\end{cases}}\)

KHI ĐÓ : \(M=\left(1+\frac{X}{Y}\right)\left(1+\frac{Y}{Z}\right)\left(1+\frac{Z}{X}\right)=\left(\frac{X+Y}{Y}\right)\left(\frac{Y+Z}{Z}\right)\left(\frac{X+Z}{X}\right)=\frac{-Z}{Y}\cdot\frac{-X}{Z}\cdot\frac{-Y}{X}=-1\)

+) X2 + Y2 + Z2 - XY - YZ - XZ = 0

<=> 2( X2 + Y2 + Z2 - XY - YZ - XZ ) = 0

<=> 2X2 + 2Y2 + 2Z2 - 2XY - 2YZ - 2XZ = 0

<=> ( X2 - 2XY + Y2 ) + ( Y2 - 2YZ + Z2 ) + ( X2 - 2XZ + Z2 ) = 0

<=> ( X - Y )2 + ( Y - Z )2 + ( X - Z )2 = 0 (1)

DỄ DÀNG CHỨNG MINH (1) ≥ 0 ∀ X,Y,Z

DẤU "=" XẢY RA <=> X = Y = Z

KHI ĐÓ : \(M=\left(1+\frac{X}{Y}\right)\left(1+\frac{Y}{Z}\right)\left(1+\frac{Z}{X}\right)=\left(1+\frac{Y}{Y}\right)\left(1+\frac{Z}{Z}\right)\left(1+\frac{X}{X}\right)=2\cdot2\cdot2=8\)

11 tháng 1 2021

Khi x + y + z = 0

=> x + y = -z

=> x + z = - y

=> y + z = - x

Khi đó M = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)

14 tháng 3 2020

Ta có : 

\(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)

Do x + y + z = 0 => x+y = -z ; y+z = -x ; z+x = -y

\(\Rightarrow A=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{\left(-1\right).xyz}{xyz}=-1\)

30 tháng 1 2017

+ Nếu x + y + z = 0 => x + y = -z; y + z = -x; x + z = -y

A = (1 + y/x)(1 + z/y)(1 + x/z)

A = (x+y)/x . (y+z)/y . (x+z)/z

A = -z/x . (-x)/y . (-y)/z = -1

+ Nếu x + y + z khác 0

x-y-z/x = -x+y-z/y = -x-y+z/z

<=> 1 - (y+z)/x = 1 - (x+z)/y = 1 - (x+y)/z

<=> y+z/x = x+z/y = x+y/z

Áp dụng t/c của dãy tỉ số = nhau ta có:

y+z/x = x+z/y = x+y/z = 2(x+y+z)/x+y+z = 2

A = (x+y)/x . (y+z)/y . (x+z)/z = 8

\(\Rightarrow A=2.\)

20 tháng 1 2017

\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\Rightarrow k=2\Rightarrow x=y=z=1\)

A=6

20 tháng 1 2017

\(\frac{x-y-z}{x}=1-\frac{y+z}{x}\) tương tự con khác

=> x=y=z

=> A=6

1 tháng 9 2016

\(\frac{x-y-z}{x}=\frac{y-x-z}{y}=\frac{z-x-y}{z}=\frac{x-y-z+y-x-z+z-x-y}{x+y+z}=\frac{-x-y-z}{x+y+z}=-1\)

\(\rightarrow\begin{cases}x-y-z=-x\\y-x-z=-y\\z-x-y=-z\end{cases}\)

\(\leftrightarrow\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}\)

\(A=\frac{x+y}{z}.\frac{y+z}{x}.\frac{z+x}{y}=8\)

18 tháng 10 2019

ADTC dãy tỉ số bằng nhau đc ko hay pk mấy cái cosi hay cot , tan , ....