K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:
Đặt \(\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=k\Rightarrow \left\{\begin{matrix} x=2018k\\ y=2019k\\ z=2020k\end{matrix}\right.\)

Khi đó:

\((x-z)^3=(2018k-2020k)^3=(-2k)^3=-8k^3\)

Và:

\(8(x-y)^2(y-z)=8(2018k-2019k)^2(2019k-2020k)\)

\(=8(-k)^2(-k)=8k^2(-k)=-8k^3\)

Do đó: \((x-z)^3=8(x-y)^2(y-z)\)

2 tháng 1 2019

cảm ơn bạn

3 tháng 12 2021

\(\dfrac{x}{2018}=\dfrac{y}{2019}=\dfrac{x-y}{-1};\dfrac{y}{2019}=\dfrac{z}{2020}=\dfrac{y-z}{-1};\dfrac{x}{2018}=\dfrac{z}{2020}=\dfrac{x-z}{-2}\\ \Leftrightarrow\dfrac{x-y}{-1}=\dfrac{y-z}{-1}=\dfrac{x-z}{-2}\\ \Leftrightarrow2\left(x-y\right)=2\left(y-z\right)=x-z\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)

AH
Akai Haruma
Giáo viên
20 tháng 10 2023

Lời giải:

Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$

$\Rightarrow x=2018a; y=2019a; z=2020a$

$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$

Mặt khác:

$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$

Từ $(1); (2)$ ta có đpcm.

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)

20 tháng 11 2021

Áp dụng tc dtsbn:

\(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-z}{-2}=\dfrac{y-z}{-1}=\dfrac{x-y}{-1}\\ \Leftrightarrow\dfrac{x-z}{2}=\dfrac{y-z}{1}=\dfrac{x-y}{1}\\ \Leftrightarrow x-z=2\left(y-z\right)=2\left(x-y\right)\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)

12 tháng 8 2021

Bài tập đâu rồi?

22 tháng 4 2018

Với \(a>0\) thì \(\left|a\right|+a=a+a=2a⋮2\)

Với \(a=0\) thì \(\left|a\right|+a=0+0=0⋮2\)

Với \(a< 0\) thì \(\left|a\right|+a=-a+a=0⋮2\)

Vậy với mọi a thì \(\left|a\right|+a⋮2\)

Ta có :\(\left|y-x\right|+\left|z-y\right|+\left|x-z\right|=2017^x+2018^x\)

\(\Rightarrow\left|y-z\right|+y-z+\left|z-y\right|+z-y+\left|x-z\right|+x-z=2017^x+2018^x\)

Vế trái chia hết cho 2 mà vế phải \(2018^x+2017^x\) không chia hết cho 2(vô lí)

Vậy không có x,y,z thỏa mãn

29 tháng 10 2019

A = | x - 2015 | +| x - 2016 | 

A = | x - 2015 | + | 2016 - x | 

A = | x - 2015 | + | 2016 - x | \(\ge\)| x - 2015 + 2016 - x |

A = | x - 2015 | + | 2016 - x | \(\ge\)1

Dấu = xảy ra\(\Leftrightarrow\)x - 2015 = 0 ; 2016 - x = 0

                       \(\Rightarrow\)x = 2015 hoặc x = 2016

Min A = 1 \(\Leftrightarrow\)x = 2015 hoặc x = 2016

29 tháng 10 2019

Bạn làm đc câu b ko