\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2015

cộng thêm 2 mỗi bên : \(\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\frac{y+z+x}{x}=\frac{z+x+y}{y}=\frac{x+y+z}{z}\) => x =y =z  ( vì tử = nhau)

=> B = 2.2.2 =8

8 tháng 2 2016

theo t/c dãy tỉ số=nhau:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

=>x=y=z

\(1+\frac{x}{y}=\frac{x+y}{y}=\frac{y+y}{y}=\frac{2y}{y}=2\)

\(1+\frac{y}{z}=\frac{y+z}{z}=\frac{z+z}{z}=\frac{2z}{z}=2\)

\(1+\frac{z}{x}=\frac{z+x}{x}=\frac{x+x}{x}=\frac{2x}{x}=2\)

=>B=2.2.2=8

8 tháng 2 2016

\(\frac{3x+3y+3z}{x+y+z}\)=\(\frac{1}{3}\)

\(\Leftrightarrow x=\frac{1}{2};y=\frac{1}{2};z=-\frac{1}{2}\)

\(\Leftrightarrow B=\left(1+\frac{\frac{1}{2}}{\frac{1}{2}}\right)\left(1+\frac{\frac{1}{2}}{\frac{-1}{2}}\right)\left(1+\frac{\frac{-1}{2}}{\frac{1}{2}}\right)\)=0

16 tháng 1 2020

Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

=> \(\frac{y+z}{x}-\frac{x}{x}=\frac{z+y}{y}-\frac{y}{y}=\frac{x+y}{z}-\frac{z}{z}\)

=> \(\frac{y+z}{x}-1=\frac{z+y}{y}-1=\frac{x+y}{z}-1\)

=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)\(=\frac{y+z-z-x}{x-y}=\frac{y-x}{x-y}=-1\)(1)
Ta lại có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+y\right)\left(z+y\right)\left(x+z\right)}{xyz}\)(2)

Từ(1),(2) => \(B=-1.\left(-1\right).\left(-1\right)=-1\)

16 tháng 1 2020

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(=\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)\(x,y,z\ne0\))

\(\Rightarrow y+z=2x\)\(z+x=2y\)\(x+y=2z\)(1)

Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}\)(2)

Từ (1) và (2) \(\Rightarrow B=\frac{2z.2x.2y}{xyz}=\frac{8xyz}{xyz}=8\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\)

\(=\frac{x+y+z}{x+y+z}=1\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)

\(\Rightarrow x=y=z\)

\(\Rightarrow B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)

\(=2.2.2=8\)

18 tháng 4 2021

Áp dụng tính chất dãy tỉ số bằng nhau , ta có

     y + z - x / x = z + x - y / y = x + y - z / z = y + z - x + z +x - y + x + y - z / x + y + z = x + y + z / x + y + z

TH1 : x + y + z = 0

       => x + y = - z ; y + z = - x và x + z = -y

Ta có : B = ( 1 + x / y ) ( 1 + y / z ) ( 1 + z / x )

               = ( x + y / y ) ( z + y / z ) ( x + z / x )        ( 1 )

               = - z / y . ( - x / z ) ( -y / x )

              = - 1

TH2 : x + y + z khác 0

Do đó y + z - x / x = z + x - y / y = x + y - z / z = x + y + z / x + y + z = 1

thì y + z - x / x = 1         => y + z - x = x                 => y + z = 2x        ( 2 )

     z + x - y / y = 1              z + x - y = y                      z + x = 2y         ( 3 )

     x + y - z / z = 1              x + y - z = z                      x + y = 2z         ( 4 )

Thay ( 2 ) , ( 3 ) , ( 4 ) vào ( 1 ) ta có 

       B = 2x/y . 2y / z . 2z / x

          = 2 . 2 . 2 = 8

Vậy B = - 1 khi x + y + z = 0

       B = 8 khi x + y + z khác 0

[ xin lỗi nha , tại mình không biết viết phân số ]

22 tháng 10 2018

Từ\(\frac{y+z-x}{x}\)=\(\frac{z+x-y}{y}\)\(\frac{x+y-z}{z}\)\(\Rightarrow\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}\) ( t/c dãy tỉ số bằng nhau)

                                                                                      \(\Rightarrow\frac{x+y+z}{x+y+z}=1\)

Khi đó: B=\(\left(1+\frac{x}{y}\right)=\left(1+\frac{y}{z}\right)=\left(1+\frac{z}{x}\right)\) \(\Rightarrow\frac{y+x}{y}=\frac{z+y}{z}=\frac{x+z}{x}\) ( Quy đồng từng phân thức)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{y+x+z+y+x+z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}\)

                                                                                                                        \(=x+y+z\) 

                                                                                                                          \(=1\)

Vậy B =1 

18 tháng 12 2017

Đề sai kìa bạn ơi 

Nếu x+y+z = 0 thì

B = x+y/y . y+z/z . z+x/x = -z/y.(-x/z).(-y/x) = -1

Nếu x+y+z khác 0 thì :

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

y+z-x/x = z+x-y/y = x+y-z/z = y+z-x+z+x-y+x+y-z/x+y+z = 1

=> y+z-x = y ; z+x-y = y ; x+y-z = x

=> x=y=z

=> B = (1+1).(1+1).(1+1) = 8 

k mk nha

1 tháng 3 2020

áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)

y+z-x/x=z+x-y/y=x+y-z/z

=y+z-x+z+x-y+x+y-z/x+y+z

=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z

=0+0+0+x+y+z/x+y+z=1

\(\Leftrightarrow\)x=y=z (*)

thay (*) vào B ta có:

B=(1+x/x)(1+x/x)(1+x/x)

  =2.2.2=8

21 tháng 8 2020

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )

\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)

Thế x = y = z vào B ta được :

\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)

12 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=2\)

Do đó : 

\(\frac{y+z-x}{x}=2\)\(\Leftrightarrow\)\(y+z-x=2x\)\(\Leftrightarrow\)\(y+z=3x\) \(\left(1\right)\)

\(\frac{z+x-y}{y}=2\)\(\Leftrightarrow\)\(z+x-y=2y\)\(\Leftrightarrow\)\(z+x=3z\) \(\left(2\right)\)

\(\frac{x+y-z}{z}=2\)\(\Leftrightarrow\)\(x+y-z=2z\)\(\Leftrightarrow\)\(x+y=3z\) \(\left(3\right)\)

Thay (1), (2) và (3) vào \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\) ta được : 

\(B=\frac{3z}{y}.\frac{3x}{z}.\frac{3y}{x}=\frac{27xyz}{xyz}=27\)

Vậy \(B=27\)

Chúc bạn học tốt ~ 

12 tháng 10 2018

B=27

hok tốt/good studying