K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2019

Uầy, đề có sai ko nhỉ? Nếu đề như vầy thì biểu thức \(K=\sqrt{3}\left(a+b+c\right)+3=3\sqrt{3}+3\) luôn rồi chứ tìm gì nữa..

8 tháng 5 2019

Em có cách này không biết đúng không.Nếu sai đừng chửi e nha!Em mới lớp 7 thôi.

Từ đề bài suy ra \(0\le a;b;c\le3\Rightarrow a\left(3-a\right)\ge0\Leftrightarrow3a\ge a^2\)

Tương tự với b và c ta được:

\(K\ge\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}=P\left(a;b;c\right)\)

Đặt \(t=\frac{b+c}{2}\),ta có:

\(P\left(a;t;t\right)=\sqrt{a^2+1}+2\sqrt{t^2+1}\)

\(=P\left(a;\frac{b+c}{2};\frac{b+c}{2}\right)=\sqrt{a^2+1}+2\sqrt{\frac{\left(b+c\right)^2}{4}+1}\)

Xét hiệu:

\(P\left(a;b;c\right)-P\left(a;\frac{b+c}{2};\frac{b+c}{2}\right)=\left(\sqrt{b^2+1}+\sqrt{c^2+1}\right)-2\sqrt{\frac{\left(b+c\right)^2}{4}+1}\)

Áp dụng BĐT \(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\) (anh tự c/m,phải có cái này mới có dấu "=")

Suy ra \(P\left(a;b;c\right)-P\left(a;\frac{b+c}{2};\frac{b+c}{2}\right)\ge\sqrt{\left(b+c\right)^2+4}-2\sqrt{\frac{\left(b+c\right)^2+4}{4}}\)

\(=\sqrt{\left(b+c\right)^2+4}-\sqrt{\left(b+c\right)^2+4}=0\) (Khai căn cái mẫu ra)

Từ đây suy ra \(P\left(a;b;c\right)\ge P\left(a;\frac{b+c}{2};\frac{b+c}{2}\right)=P\left(a;t;t\right)\)

Mặt khác,kết hợp giả thiết suy ra  \(a+2t=3\Rightarrow a=3-2t\)

Do đó,ta cần tìm min của: \(P\left(3-2t;t;t\right)=\sqrt{\left(3-2t\right)^2+1}+2\sqrt{t^2+1}\)

Đến đây em bí rồi ạ,để em suy nghĩ tiếp.

8 tháng 5 2019

Giải xong bài này ra chắc chết... "." chấm cái nhẹ hóng cao nhân!

2 tháng 6 2017

sai đề ở căn thứ 3

2 tháng 6 2017

\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)

giúp mình với ạ =))

1 tháng 8 2019

mình đánh nhầm, đề là cho a,b,c là các số thực dương tổng bằng 1

29 tháng 7 2017

qua học 24 mà coi

29 tháng 7 2017

\(3a^2+4ab+b^2=3a^2+3ab+ab+b^2=3a\left(a+b\right)+b\left(a+b\right)=\left(3a+b\right)\left(a+b\right)\)

xong AM -GM

10 tháng 7 2017

Ta có:

\(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+\left(b+c\right)+\left(b+c\right)}\)

\(\le\frac{1}{16}.\left(\frac{1}{a+b}+\frac{1}{c+a}+\frac{2}{b+c}\right)\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{1}{3a+2b+3c}\le\frac{1}{16}.\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{2}{c+a}\right)\left(2\right)\\\frac{1}{3a+3b+2c}\le\frac{1}{16}.\left(\frac{1}{c+a}+\frac{1}{b+c}+\frac{2}{a+b}\right)\left(3\right)\end{cases}}\)

Từ (1), (2), (3) \(\Rightarrow P\le\frac{1}{16}.\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\right)\)

\(=\frac{1}{4}.2017=\frac{2017}{4}\)

đề thi vào lớp 10 năm nay của tỉnh thanh hóa

28 tháng 11 2019

Áp dụng BĐT Bunhiacopxky :

\(\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2=1\)

\(\Rightarrow9a^3+3b^2+c\ge\frac{1}{\frac{1}{9a}+\frac{1}{3}+c}\)

\(\Rightarrow\frac{a}{9a^3+3b^2+c}\le a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)

Thực hiện tương tự với các phân thức khác và cộng theo vế :
\(P\le\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{a+b+c}{3}+\left(ab+bc+ac\right)\)

\(P\le\frac{2}{3}+ab+bc+ac\)

Theo hệ quả quen thuộc của BĐT AM - GM :

\(ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(\Rightarrow P\le\frac{2}{3}+\frac{1}{3}=1\Rightarrow P_{max}=1\)

Vậy GTLN của P là 1 khi \(a=b=c=\frac{1}{3}\)