K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2017

ta có1,5x=2y=2,5z <=>

\(\dfrac{x}{\dfrac{2}{3}}=\dfrac{y}{0,5}=\dfrac{z}{\dfrac{2}{5}}=\dfrac{x+y+z}{\dfrac{2}{3}+0,5+\dfrac{2}{5}}=\dfrac{587,5}{\dfrac{47}{30}}=375\)

=> y=375.0,5=187,5

4 tháng 12 2019

Áp dụng bất đẳng thức Cauchy 

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\)

\(M\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+xz\right)}+\frac{7}{xy+yz+zx}\)

Áp dụng BĐT Cauchy - Schwarz :

\(\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}\ge\frac{\left(1+2\right)^2}{\left(x+y+z\right)^2}=9\)

và \(\frac{7}{xy+yz+xz}\ge\frac{7}{\frac{1}{3}\left(x+y+z\right)^2}=21\)

\(\Rightarrow M\ge9+21=30\)

Dấu " = " xảy ra khi \(x=y=z=\frac{1}{3}\)

7 tháng 5 2020

Áp dụng BĐT Cauchy schwarz ta có:

\(M=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

\(\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}\)

\(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{7}{2\left(xy+yz+zx\right)}\)

\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{7}{\frac{2\left(x+y+z\right)^2}{3}}=30\)

Đẳng thức xảy ra tại x=y=z=1/3

AH
Akai Haruma
Giáo viên
25 tháng 4 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)

\(\Rightarrow \sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{y+z}}{x}\geq \frac{(y+z)(x+\sqrt{yz})}{x}=y+z+\frac{\sqrt{yz}(y+z)}{x}\)

Hoàn toàn tương tự :

\(\sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{x+z}}{y}\geq x+z+\frac{\sqrt{xz}(x+z)}{y}\)

\(\sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{x+y}}{z}\geq x+y+\frac{\sqrt{xy}(x+y)}{z}\)

Cộng theo vế:

\(T\geq 2(x+y+z)+\underbrace{\frac{(x+y)\sqrt{xy}}{z}+\frac{(y+z)\sqrt{yz}}{x}+\frac{(z+x)\sqrt{zx}}{y}}_{M}\)

Ta có:

\(M=\frac{(\sqrt{2}-z)\sqrt{xy}}{z}+\frac{(\sqrt{2}-x)\sqrt{yz}}{x}+\frac{(\sqrt{2}-y)\sqrt{xz}}{y}\)

\(=\sqrt{2}\left(\frac{\sqrt{xy}}{z}+\frac{\sqrt{yz}}{x}+\frac{\sqrt{xz}}{y}\right)-(\sqrt{xy}+\sqrt{yz}+\sqrt{xz})\)

Áp dụng BĐT AM-GM:

\(\frac{\sqrt{xy}}{z}+\frac{\sqrt{yz}}{x}+\frac{\sqrt{xz}}{y}\geq 3\sqrt[3]{\frac{xyz}{xyz}}=3\)

\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\leq \frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=\sqrt{2}\)

Do đó: \(M\geq 3\sqrt{2}-\sqrt{2}=2\sqrt{2}\)

\(\Rightarrow T\geq 2(x+y+z)+M\geq 2\sqrt{2}+2\sqrt{2}=4\sqrt{2}\)

Vậy \(T_{\min}=4\sqrt{2}\)

20 tháng 8 2020

Ta có \(\left(\frac{x^3}{y^2+z}+\frac{y^3}{z^2+x}+\frac{z^3}{x^2+y}\right)\left[x\left(y^2+x\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\ge\left(x^2+y^2+z^2\right)^2\left(1\right)\)

Ta chứng minh \(\left(x^2+y^2+z^2\right)^2\ge\frac{4}{5}\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\)

\(\Leftrightarrow5\left(x^2+y^2+z^2\right)^2\ge4\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\left(2\right)\)

Thật vậy \(\hept{\begin{matrix}3\left(\Sigma x^2\right)^2\ge\left(\Sigma x^2\right)\cdot\Sigma x^2=4\Sigma zx\left(3\right)\\2\left(\Sigma x^2\right)^2\ge4\Sigma xy^2\left(4\right)\end{matrix}\Leftrightarrow2\left(\Sigma x^2\right)^2\ge\Sigma xy^2\left(x+y+z\right)}\)(*)

Từ các Bất Đẳng Thức \(\hept{\begin{cases}\frac{x^4-2x^3z+z^2x^2}{2}\ge0\\\frac{x^4+y^4+2x^4}{4}\ge xyz^2\end{cases}}\)=> (*) đúng

Như vậy (3),(4) đúng => (2) đúng

Từ đó suy ra \(T\ge\frac{4}{5}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)

24 tháng 9 2017

Áp dụng BĐT bunyakovsky:

\(\sum\dfrac{x^2}{y+z}\ge\sum\dfrac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+y^2}=a\\\sqrt{y^2+z^2}=b\\\sqrt{z^2+x^2}=c\end{matrix}\right.\) thì có a+b+c=2016 và cần tìm Min của \(\sum\dfrac{a^2+c^2-b^2}{2\sqrt{2}b}\) (\(x^2=\dfrac{a^2+c^2-b^2}{2}\))

Ta có: \(\sum\dfrac{a^2+c^2-b^2}{2\sqrt{2}b}=\dfrac{1}{2\sqrt{2}}.\left(\sum_{sym}\dfrac{a^2}{b}-\sum b\right)\)

Áp dụng BĐT cauchy-schwarz:

\(\sum_{sym}\dfrac{a^2}{b}=\dfrac{a^2}{b}+\dfrac{c^2}{b}+\dfrac{b^2}{a}+\dfrac{c^2}{a}+\dfrac{a^2}{c}+\dfrac{b^2}{c}\ge\dfrac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}=2\left(a+b+c\right)\)

DO đó \(VT\ge\dfrac{1}{2\sqrt{2}}\left(2\sum a-\sum a\right)=\dfrac{1}{2\sqrt{2}}\left(a+b+c\right)=\dfrac{2016}{2\sqrt{2}}=\dfrac{1008}{\sqrt{2}}\)

Dấu = xảy ra khi a=b=c hay \(x=y=z=\dfrac{672}{\sqrt{2}}\)

11 tháng 4 2016

Áp dụng bất đăng thức Cauchy : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)

Nên \(P\ge\frac{3}{\sqrt[3]{xyz}}+2xyz\). Đẳng thức khi : x=y=z

Đặt \(t=\sqrt[3]{xyz}\)

Cũng theo Cauchy : \(1=x^2+y^2+z^2\ge3\sqrt{x^2y^2z^2}\). Đẳng thức khi x=y=z

Nên ta có 0<t\(\le\frac{\sqrt{3}}{3}\)

Xét hàm số \(f\left(t\right)=\frac{3}{t}+2t^3\) với  0<t\(\le\frac{\sqrt{3}}{3}\)

Tính \(f'\left(t\right)=-\frac{3}{t^2}+6t^2=\frac{3\left(2t^2-1\right)}{t^2}\)

Lập bảng biến thiên của f(t) rồi chỉ ra : \(f\left(t\right)\ge\frac{29\sqrt{3}}{9}\) với mọi t\(\in\left(0;\frac{\sqrt{3}}{3}\right)\)

Từ đó \(P\ge\frac{29\sqrt{3}}{9}\)

Giá trị nhỏ nhất của P là \(\frac{29\sqrt{3}}{9}\) đạt được khi \(x=y=z=\frac{\sqrt{3}}{3}\)

 
10 tháng 12 2017

cd đúng ko

19 tháng 8 2020

Bài này có cách lập bảng biến thiên,nhưng mình sẽ làm cách đơn giản

Từ giả thiết \(x^2+y^2+z^2=1\Rightarrow0< x,y,z< 1\)

Áp dụng Bất Đẳng Thức Cosi cho 3 cặp số dương \(2x^2;1-x^2;1-x^2\)

\(\frac{2x^2+\left(1-x^2\right)+\left(1-x^2\right)}{3}\ge\sqrt[3]{2x^2\left(1-x^2\right)^2}\le\frac{2}{3}\)

\(\Leftrightarrow x\left(1-x^2\right)\le\frac{2}{3\sqrt{3}}\Leftrightarrow\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\Leftrightarrow\frac{x}{y^2+z^2}\ge\frac{3\sqrt{3}}{2}x^2\left(1\right)\)

Tương tự ta có \(\hept{\begin{cases}\frac{y}{z^2+x^2}\ge\frac{3\sqrt{3}}{2}y^2\left(2\right)\\\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}z^2\left(3\right)\end{cases}}\)

Cộng các vế (1), (2) và (3) ta được \(\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{\sqrt{3}}{3}\)

2 tháng 10 2021

Áp dụng BĐT cosi cho 3 số x;y;z dương

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}\ge2\sqrt{\dfrac{x^2y^2}{y^2z^2}}=\dfrac{2x}{z}\\ \dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge2\sqrt{\dfrac{y^2z^2}{x^2z^2}}=\dfrac{2y}{z}\\ \dfrac{x^2}{y^2}+\dfrac{z^2}{x^2}\ge2\sqrt{\dfrac{x^2z^2}{x^2y^2}}=\dfrac{2z}{y}\)

Cộng vế theo vế 

\(\Leftrightarrow2\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\right)\ge2\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)\)

\(\LeftrightarrowĐpcm\)

2 tháng 10 2021

Cám ơn thầy ạ, tuy nhiên hình như là có sự nhầm lẫn rồi thầy ạ, bài này thầy xem lại  đề bài giúp em với ạ

NV
16 tháng 1 2021

Ta có: 

\(\dfrac{x}{yz}+\dfrac{y}{zx}+\dfrac{z}{xy}=\dfrac{1}{2}\left(\dfrac{x}{yz}+\dfrac{y}{zx}+\dfrac{x}{yz}+\dfrac{z}{xy}+\dfrac{y}{zx}+\dfrac{z}{xy}\right)\ge\dfrac{1}{2}\left(\dfrac{2}{z}+\dfrac{2}{y}+\dfrac{2}{x}\right)\)

\(\Rightarrow P\ge\dfrac{1}{2}\left(x^2+y^2+z^2\right)+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

\(\Rightarrow P\ge\dfrac{1}{2}\left(x^2+\dfrac{1}{x}+\dfrac{1}{x}\right)+\dfrac{1}{2}\left(y^2+\dfrac{1}{y}+\dfrac{1}{y}\right)+\dfrac{1}{2}\left(z^2+\dfrac{1}{z}+\dfrac{1}{z}\right)\)

\(\Rightarrow P\ge\dfrac{3}{2}\sqrt[3]{\dfrac{x^2}{x^2}}+\dfrac{3}{2}\sqrt[3]{\dfrac{y^2}{y^2}}+\dfrac{3}{2}\sqrt[3]{\dfrac{z^2}{z^2}}=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\)