Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/s: Bạn nào đang cần thì tham khảo bài này nhé, cô mình chữa rồi.
Bổ sung ĐK: \(\left\{{}\begin{matrix}a< b+c\\b< a+c\\c< a+b\end{matrix}\right.\)
Có: \(0\le a\le b\le1\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\\ \Rightarrow1-b-a+ab\ge0\\ \Rightarrow ab+1\ge a+b\\ \Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(\text{vì }c\ge0\right)\)
CMTT ta được \(\frac{a}{bc+1}\le\frac{a}{b+c}\\ \frac{b}{ac+1}\le\frac{b}{a+c}\)
\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{a+a}{b+c+a}+\frac{b+b}{a+c+b}+\frac{c+c}{a+b+c}\\ \Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}\\ \Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\left(đpcm\right)\)
Bài này lớp 7 là khó đấy \(0\le a\le b\le c\le1\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\end{cases}\Rightarrow\left(1-a\right)\left(1-b\right)\ge0}\)
\(\Leftrightarrow ab-a-b+1\ge0\Leftrightarrow ab+1\ge a+b\)(*)
Vì \(0\le a\le b\le c\le1\) nên \(\hept{\begin{cases}ab\ge0\\1\ge c\end{cases}\Rightarrow ab+1\ge c}\)Kết hợp với (*) ta được :
\(2\left(ab+1\right)\ge a+b+c\) \(\Leftrightarrow\frac{1}{ab+1}\le\frac{2}{a+b+c}\Rightarrow\frac{c}{ab+1}\le\frac{2}{a+b+c}\)(1)
Chứng minh tương tự \(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\text{ }\left(2\right)\\\frac{b}{ac+1}\le\frac{2b}{a+b+c}\text{ }\left(3\right)\end{cases}}\)
Cộng vế với vế của (1);(2);(3) ta được :
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)(đpcm)
Lời giải:
Do $0< a< b< c< 1$ nên $0< ab< ac< bc$
\(\Rightarrow \frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}< \frac{a}{ab+1}+\frac{b}{ab+1}+\frac{c}{ab+1}=\frac{a+b+c}{ab+1}(1)\)
Vì $a,b< 1$ nên \((a-1)(b-1)>0\Leftrightarrow ab+1> a+b\)
$c< 1$ nên $1+ab>c$
\(\Rightarrow 2(ab+1)> a+b+c(2)\)
Từ (1);(2) \(\Rightarrow \frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}< \frac{a+b+c}{ab+1}< \frac{2(ab+1)}{ab+1}=2\)
Ta có đpcm.
Ta có : \(0\le a\le b\le1\)\(\Rightarrow\hept{\begin{cases}a-1\le0\\b-1\le0\end{cases}}\)
\(\Rightarrow\)\(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\)
\(\Rightarrow ab+1\ge a+b\)\(\Rightarrow\frac{1}{ab+1}\le\frac{1}{a+b}\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\)( vì c \(\ge\)0 )
Mà \(\frac{c}{a+b}\le\frac{2c}{a+b+c}\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
tương tự : \(\frac{a}{bc+1}\le\frac{2a}{a+b+c};\frac{b}{ac+1}\le\frac{2b}{a+b+c}\)
\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)