Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.
Lời giải:
\(\frac{b-c}{(a-b)(a-c)}+\frac{c-a}{(b-c)(b-a)}+\frac{a-b}{(c-a)(c-b)}=\frac{-(b-c)^2-(c-a)^2-(a-b)^2}{(a-b)(b-c)(c-a)}\)
\(=\frac{-2(a^2+b^2+c^2-bc-ab-ac)}{(a-b)(b-c)(c-a)}=\frac{-2[(a^2+bc-ab-ac)+(b^2+ac-ba-bc)+(c^2+ab-ca-cb)]}{(a-b)(b-c)(c-a)}\)
\(=\frac{-2[(a-b)(a-c)+(b-c)(b-a)+(c-a)(c-b)]}{(a-b)(b-c)(c-a)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
a+b−cc=b+c−aa=c+a−bb
⇒a+b−cc+1=b+c−aa+1=c+a−bb+1
⇒a+bc=b+ca=c+ab
+)Nếu a+b+c=0⇒a+b=−c;b+c=−a;c+a=−b
⇒B=a+ba.c+ac.b+cb=−ca.−bc.−ab=−(abc)abc=−1
Nếu a+b+c≠0
Áp dụng tính chất dãy tỉ số bằng nhau ta có
a+bc=b+ca=c+ab=2(a+b+c)a+b+c=2
⇒a+b=2c
b+c=2a
c+a=2b
⇒B=2ca.2bc.2ab=2.2.2=8
Ta có :
\(\frac{\left(b-c\right)}{\left(a-b\right)\left(a-c\right)}\)
\(=\frac{\left(b-a+a-c\right)}{\left(a-b\right)\left(a-c\right)}\)
\(=\frac{\left(b-a\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(a-c\right)}{\left(a-b\right)\left(a-c\right)}\)
\(=\frac{1}{\left(a-b\right)}+\frac{1}{\left(c-a\right)}\)
Tương tự
\(\frac{\left(c-a\right)}{\left(b-c\right)\left(b-a\right)}\)
\(=\frac{1}{\left(b-c\right)}+\frac{1}{\left(a-b\right)}\)
\(\frac{\left(a-b\right)}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{1}{\left(c-a\right)}+\frac{1}{\left(b-c\right)}\)
Cộng theo vế các dẳng thức trên đựoc ĐPCM
Lam tat the ma anh van hieu