Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D A' B' C' D' I J
a) Có AA' // DD' và AB//DC nên \(\left(Ax,By\right)\) // \(\left(C_z,D_t\right)\).
b) Do \(\left(Ax,By\right)\) // \(\left(C_z,D_t\right)\) và \(\left(\beta\right)\cap\left(AA'B'B\right)=A'B'\) và \(\left(\beta\right)\cap\left(CC'D'D\right)=C'D'\) nên \(A'B'\) // \(C'D'\).
Chứng minh tương tự B'C'//D'A'.
Do đó tứ giác A'B'C'D' là hình bình hành và J là trung điểm của A'C'.
Suy ra: IJ là đường trung bình của hình thang A'C'CA nên IJ // AA'.
c) Tương tự IJ là đường trung bình của hình thang B'D'DB \(IJ=\dfrac{\left(B'B+DD'\right)}{2}\).
Theo câu b IJ là đường trung bình của hình thang A'C'CA nên \(IJ=\dfrac{\left(AA'+CC'\right)}{2}\).
Suy ra: \(BB'+DD'=AA'+CC'\) hay \(DD'=a+c-b\).
Lấy điểm O cố định rồi đặt \(\overrightarrow{OA_1}=\overrightarrow{a_1};\overrightarrow{OB_1}=\overrightarrow{b_1};\overrightarrow{OC_1}=\overrightarrow{c_1};\overrightarrow{OD_1}=\overrightarrow{d_1}\)
Điều kiện cần và đủ để tứ giác \(A_1B_1C_1D_1\) là hình bình hành là :
\(\overrightarrow{a_1}+\overrightarrow{c_1}=\overrightarrow{b_1}+\overrightarrow{d_1}\) (1)
\(\overrightarrow{a}+\overrightarrow{c}=\overrightarrow{b}+\overrightarrow{d}\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
<=> Tứ giác ABCD là hình bình hành
Chọn A