Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có phương trình đoạn chắn của 3 điểm M ( 2;0;0 ), N ( 0;-1;0 ), P ( 0;0;2 ) là x 2 + y - 1 + z 2 = 1
Đáp án cần chọn là D
Đáp án D
Phương pháp giải: Xét đẳng thức vectơ, đưa về hình chiếu của điểm trên mặt phẳng
Lời giải:
Gọi M(a;b;c) thỏa mãn đẳng thức vectơ 2 M A → + M B → + M C → = 0 →
Khi đó S = 2 N A 2 + N B 2 + N C 2 = 2 N A 2 → + N B 2 → + N C 2 → = 2 M N → + M A → 2 + M N → + M B → 2 + M N → + M C → 2
= 4 M N 2 + 2 N M → 2 M A → + M B → + M C → + 2 M A 2 → + M B 2 → + M C 2 →
= 4 M N 2 + 2 M A 2 → + M B 2 → + M C 2 →
Suy ra Smin ó MNmin ó N là hình chiếu của M trên(P) => MN ⊥ (P)
Phương trình đường thẳng MN là
Mà m ∈ mp(P) suy ra t–(1–t)+t+2+2=0 ó t = –1 => N(–1;2;1)
Đáp án A
Mặt phẳng (P) cắt Ox, Oy, Oz tại M, N, P có phương trình x 2 + y b + z c = 1
Vì N thuộc mặt phẳng (P) ⇒ 1 2 + 2 b + 1 c = 1 ⇔ 1 b + 1 c = 1 2 ⇔ b c = 2 b + c .
Đáp án C
Gọi I(x;y;0) là tâm của mặt cầu (S) ⇒ A I → = x - 1 ; y - 2 ; 4 A I → = x - 1 ; y + 3 ; - 1 A I → = x - 2 ; y - 2 ; - 3
Theo bài ra, ta có
I A = I B I A = I C ⇒ x - 1 2 + y - 2 2 + 4 2 = x - 1 2 + y + 3 2 + - 1 2 x - 1 2 + y - 2 2 + 4 2 = x - 2 2 + y - 2 2 + - 3 2 ⇔ x = - 2 y = 1
Vậy I ( - 2 ; 1 ; 0 ) ⇒ A I → = ( - 3 ; - 1 ; 4 ) ⇒ l = 2 . I A = 2 16 .
Chọn A
Điểm N(x;y;0). Tìm x;y từ hệ hai phương trình NA = NB = NC.