Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Với bài toán này ta sẽ chọn trường hợp cụ thể thỏa mãn hai điều kiện trên, từ đó xét tam giác ABC là tam giác gì.
Chọn z 1 = 1 + 3 i ; z 2 = 1 − 3 i ; z 3 = − 2
⇒ A 1 ; 3 , B 1 ; − 3 , C − 2 ; 0 ⇒ A B = B C = C A = 2 3
Vậy ABC là tam giác đều.
Chọn A.
Phương pháp : Tìm tọa độ các điểm A, B, C sau đó dùng tích vô hướng.
Chọn D.
Phương pháp:
Nên O là tâm đường tròn ngoại tiếp tam giác ABC.
Vậy tam giác ABC có trọng tâm đồng thời là tâm đường tròn ngoại tiếp nên tam giác ABC đều.
Đáp án D
Tọa độ trọng tâm G của tam giác ABC là G − 4 + 1 − 6 3 ; 1 + 3 + 0 3 = G − 3 ; 4 3
Suy ra điểm G là điểm biểu diễn số phức z = − 3 + 4 3 i
Từ bài ra ta có A(0;3),B(2;-2),C(-5;-1)
⇒ Trọng tâm G của tam giác ABC có tọa độ
x G = x A + x B + x C 3 = 0 + 2 + ( - 5 ) 3 = - 1 y G = y A + y B + y C 3 = - 3 + ( - 2 ) + ( - 1 ) 3 = - 2
⇒ G(-1;-2)
Điểm G(-1;-2) biểu diễn số phức z=-1-2i.
Chọn đáp án B.