K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

\(\begin{array}{l}M + N - P = 3{x^3} - 4{x^2}y + 3x - y + 5xy - 3x + 2 - \left( {3{x^3} + 2{x^2}y + 7x - 1} \right)\\ = 3{x^3} - 4{x^2}y + 3x - y + 5xy - 3x + 2 - 3{x^3} - 2{x^2}y - 7x + 1\\ = \left( {3{x^3} - 3{x^3}} \right) + \left( { - 4{x^2}y - 2{x^2}y} \right) + 5xy + \left( {3x - 3x - 7x} \right) - y + \left( {2 + 1} \right)\\ =  - 6{x^2}y + 5xy - 7x - y + 3\\M - N - P = 3{x^3} - 4{x^2}y + 3x - y - \left( {5xy - 3x + 2} \right) - \left( {3{x^3} + 2{x^2}y + 7x - 1} \right)\\ = 3{x^3} - 4{x^2}y + 3x - y - 5xy + 3x - 2 - 3{x^3} - 2{x^2}y - 7x + 1\\ = \left( {3{x^3} - 3{x^3}} \right) + \left( { - 4{x^2}y - 2{x^2}y} \right) - 5xy + \left( {3x + 3x - 7x} \right) - y + \left( { - 2 + 1} \right)\\ =  - 6{x^2}y - 5xy - x - y - 1\end{array}\)

a: \(N=\dfrac{3x^5-4x^4+6x^3}{-2x^2}=-\dfrac{3}{2}x^3+2x^2-3x\)

b: \(N=\dfrac{\left(6x^4y^5-3x^3y^4+\dfrac{1}{2}x^4y^3z\right)}{-\dfrac{1}{3}x^2y^3}=-18x^2y^2+9xy-\dfrac{3}{2}x^2z\)

c: \(\Leftrightarrow N\cdot\left(y-x\right)=\left(x-y\right)^3\)

\(\Leftrightarrow N=\dfrac{\left(x-y\right)^3}{y-x}=-\left(y-x\right)^2\)

d: \(\Leftrightarrow N\cdot\left(y^2-x^2\right)=\left(y^2-x^2\right)^2\)

hay \(N=y^2-x^2\)

19 tháng 7 2018

Bài 10 :

Câu a :

\(5xy\left(x-y\right)-2x+2y\)

\(=5xy\left(x-y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(5xy-2\right)\)

Câu b :

\(6x-2y-x\left(y-3x\right)\)

\(=2\left(3x-y\right)+x\left(3x-y\right)\)

\(=\left(3x-2y\right)\left(2+x\right)\)

Câu c :

\(x^2+4x-xy-4y\)

\(=x\left(x+4\right)-y\left(x+4\right)\)

\(=\left(x+4\right)\left(x-y\right)\)

Câu d :

\(3xy+2z-6y-xz\)

\(=\left(3xy-6y\right)-\left(xz-2z\right)\)

\(=3y\left(x-2\right)-z\left(x-2\right)\)

\(=\left(x-2\right)\left(3y-z\right)\)

19 tháng 7 2018

Bài 11 :

Câu a :

\(4-9x^2=0\)

\(\Leftrightarrow\left(2-3x\right)\left(2+3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2-3x=0\\2+3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy ........................

Câu b :

\(x^2+x+\dfrac{1}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\dfrac{1}{2}=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy........................

Câu c :

\(2x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy..................

Câu d :

\(3x\left(x-4\right)-x+4=0\)

\(\Leftrightarrow3x\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy................................

Câu e :

\(x^3-\dfrac{1}{9}x=0\)

\(\Leftrightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)

\(\Leftrightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\\x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

Vậy........................

Câu f :

\(\left(3x-y\right)^2-\left(x-y\right)^2=0\)

\(\Leftrightarrow\left(3x-y-x+y\right)\left(3x-y+x-y\right)=0\)

\(\Leftrightarrow2x\left(4x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\4x-2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy..........................

Câu 2: 

a: \(n^2-2n+5⋮n-1\)

\(\Leftrightarrow n^2-n-n+1+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)

b: \(4x^2-6x-16⋮x-3\)

\(\Leftrightarrow4x^2-12x+6x-18+2⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;2;-2\right\}\)

hay \(x\in\left\{4;2;5;1\right\}\)

Câu 3: 

a: \(\left(3x-8\right)\left(7x+10\right)-\left(2x-15\right)\left(3x-8\right)=0\)

\(\Leftrightarrow\left(3x-8\right)\left(7x+10-2x+15\right)=0\)

\(\Leftrightarrow\left(3x-8\right)\left(5x+25\right)=0\)

=>x=8/3 hoặc x=-5

b: \(\dfrac{\left(x^4-2x^2-8\right)}{x-2}=0\)(ĐKXĐ: x<>2)

\(\Leftrightarrow x^4-4x^2+2x^2-8=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2\right)=0\)

=>x+2=0

hay x=-2

Bài 4: 

a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)

\(\Leftrightarrow3x-40=2\)

=>3x=42

hay x=14

b: \(\Leftrightarrow x^3+8-x^3-2x=0\)

=>-2x+8=0

=>-2x=-8

hay x=4

c: \(x\left(x-2\right)+\left(x-2\right)=0\)

=>(x-2)(x+1)=0

=>x=2 hoặc x=-1

d: \(5x\left(x-3\right)-x+3=0\)

=>5x(x-3)-(x-3)=0

=>(x-3)(5x-1)=0

=>x=3 hoặc x=1/5

e: \(3x\left(x-5\right)-\left(x-1\right)\left(3x+2\right)=30\)

\(\Leftrightarrow3x^2-15x-3x^2-2x+3x+2=30\)

=>-14x=28

hay x=-2

f: \(\Leftrightarrow\left(x+2\right)\left(x+30-x-5\right)=0\)

=>x+2=0

hay x=-2

13 tháng 8 2017

2) Bạn làm phép chia đa thức cho đa thức, kẻ hẳn dấu chia ra như tiểu học ấy. Được kết quả là \(\left(4y^2+1\right)\) dư (-2y+6) nhé.

3) a) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
b) \(\left(x^2+1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow x^2+1=0\) hoặc x-3=0 hoặc x+2=0
Trường hợp 1 loại vì \(x^2\) không âm, hai trường hợp còn lại tìm được x=3 và x = -2.

4) a)\(x^2-y^2+2y-1=x^2-\left(y^2-2y+1\right)=x^2-\left(y-1\right)^2=\left(x-y+1\right)\left(x+y-1\right)\)

b) \(5x^2-10xy-20z^2+5y^2\)
= \(5\left(x^2-2xy-4z^2+y^2\right)\)
= \(5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
= 5 ( x-y-2z ) ( x-y+2z )

5) \(x^3=x\Leftrightarrow x=\pm1\)

29 tháng 8 2018

1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)

\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)

ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)

\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)

vậy \(x_{max}=-2+3\sqrt{2}\)

dâu "=" xảy ra khi \(y=\sqrt{2}-1\)

29 tháng 8 2018

câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)

\(\Leftrightarrow-5\le x+y\le-2\)

\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)

\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)

bài này có trong đề thi hsg trường mk :)