Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ\(\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab\)
\(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)
\(A\left(x\right)=2x^2-x^3+x-3\)
\(B\left(x\right)=x^3-x^2+3-3x\)
a, Ta có : \(P\left(x\right)=A\left(x\right)+B\left(x\right)=2x^2-x^3+x-3+x^3-x^2+3-3x\)
\(=x^2-2x\)
b, Đề khs hiểu thế, đã là 1 đa thức thì luôn đặt đa thức ''='' 0 thôi :v
Đặt \(P\left(x\right)=x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy đa thức có nghiệm là 0;2
c, \(Q\left(x\right)=5x^2+a^2+ax\)
Ta có : \(Q\left(-1\right)=5\left(-1\right)^2+a^2+a\left(-1\right)=0\)
\(\Leftrightarrow5+a^2-a=0\)(cùy, ko nốt đc)
Suy ra : Vô nghiệm Vậy đa thức ko có nghiệm.
a: \(\widehat{AEB}< 90^0\)
nên \(\widehat{BEC}>90^0\)(đpcm)
b: Đặt \(\widehat{C}=a;\widehat{B}=c\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}a-c=10\\a+c=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=50\\b=40\end{matrix}\right.\)
\(\widehat{AEB}=90^0-20^0=70^0\)
=>\(\widehat{BEC}=110^0\)
Bài giải
Tam giác ABC vuông cân tại A \(\Rightarrow\text{ }\widehat{B}=\widehat{C}\)
a, Áp dụng định lý Pytago vào tam giác Vuông cân ABC ta được :
\(BC^2=AB^2+AC^2=4^2+4^2=32\)
\(BC=\sqrt{32}\)
b, Xét Tam giác vuông BDA và Tam giác vuông CDA có :
AB = AC ( gt )
AD : cạnh chung
=> Tam giác BDA = Tam giác CDA ( cạnh huyền - cạnh góc vuông )
=> BD = CD ( cạnh tương ứng )
=> D là trung điểm của BC
Còn lại chịu
Hình tự vẽ :<
GT | △ABC vuông cân ở A AB=AC=4cm Từ A kẻ AD\(\perp\)BC Từ D kẻ DE\(\perp\)AC |
KL | BC=?, AD=? D: trđ BC △AED vuông cân |
a) Xét △ABC vuông ở A
\(\Rightarrow\)AB2+AC2=BC2 (định lí Pythagoras)
\(\Rightarrow\)BC2=2.42
\(\Rightarrow\)BC=căn 32
Vậy BC=căn 32 cm
b) Xét △BAD và △CAD có:
BDA=CDA (=90o)
AD: chung
AB=AC (gt)
\(\Rightarrow\)△BAD=△CAD (ch-cgv)
\(\Rightarrow\)DB=DC (2 cạnh tương ứng)
\(\Rightarrow\)D là trđ BC
c) Ta có: DAB=DAC (△DAB=△DAC)
Mà AB \(\perp\)AC
DE \(\perp\)AC
\(\Rightarrow\)AB//DE
\(\Rightarrow\)BAD=ADE (slt)
mà BAD=CAD
\(\Rightarrow\)DAC=ADE hay DAE=ADE, lại có DEA=90o
\(\Rightarrow\)△ADE vuông cân tại E
d) Ta có: DB=DC (D: trđ BC)
\(\Rightarrow\)DB=căn 32 :2
\(\Rightarrow\)DB=căn 32: căn 4
\(\Rightarrow\)DB= căn 8
Xét △ABD vuông tại D
\(\Rightarrow\)BD2+AD2=AB2 (định lí Pythagoras)
\(\Rightarrow\)AD2=AB2-BD2
\(\Rightarrow\)AD= căn 8
Vậy AD=căn 8 cm
a) Xét \(\Delta\)ABC vuông cân tại A
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=4^2+4^2\)
\(\Rightarrow BC=\sqrt{4^2+4^2}\)
\(\Rightarrow BC=4\sqrt{2}\)
b) Ta có \(\Delta\)ABC cân tại A có AD là đường cao => AD đồng thời là đường trung tuyến \(\Delta\)ABC
=> AD là đường phân giác & cũng là đường cao \(\Delta\)ABC
=> D là trung điểm BC
c) Vì AD là đường phân giác \(\Delta\)ABC
=>\(\Rightarrow\widehat{BAD}=\widehat{CAD}=45^o\).Lại có \(\Delta\)ADE vuông tại E (DE vuông góc vs AC)
=> \(\Delta\)ADE vuông cân tại E
giúp mình gấp với ạ
b^2=ac
=>b/a=c/b=k
=>b=ak; c=bk
=>c=ak*k=ak^2; b=ak
\(\dfrac{a+b}{a-b}=\dfrac{a+ak}{a-ak}=\dfrac{1+k}{1-k}\)
\(\dfrac{c+a}{c-a}=\dfrac{ak^2+a}{ak^2-a}=\dfrac{k^2+1}{k^2-1}< >\dfrac{1+k}{1-k}\)
=>Đề sai rồi bạn