Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)\)
biểu thức trong dấu ngoặc thứ nhất bằng \(\frac{13}{60}\)nên lớn hơn \(\frac{12}{60}\), tức là lớn hơn 0,2, còn các dấu ngoặc sau đều dương, do đó :
A > 0,2
để chứng minh A < 0,4 hay \(\frac{2}{5}\)
\(A=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}\right)-\left(\frac{1}{7}-\frac{1}{8}\right)-...-\left(\frac{1}{97}-\frac{1}{98}\right)-\frac{1}{99}\)
biểu thức trong dấu ngoặc thứ nhất nhở hơn \(\frac{2}{5}\), còn các dấu ngoặc sau đều dương,
do đó A < \(\frac{2}{5}\)hay A < 0,4
Vậy 0,2 < A < 0,4
Cho A=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}\)
CMR:0,2<A<0,4
Cho A =\(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}\)CM 0,2<A<0,4
1/2-1/3+1/4-1/5=13/60>12/60=0,2
tiếp tục gom vd 1/6>1/7=>1/6-1/7>0
cứ như thế
A>0,2
tương tự như trên ha!
Bài này giải ra dài lắm.
mình đang cần bài này