K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

\(B=3^1+3^3+3^5+...+3^{1991}\)

\(\Rightarrow B=\left(3^1+3^3+3^5\right)+...+\left(3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Rightarrow B=\left(3^1+3^3+3^5\right)+...+3^{1988}.\left(3^1+3^3+3^5\right)\)

\(\Rightarrow B=273+...+3^{1988}.273\)

\(\Rightarrow B=273.\left(1+...+3^{1988}\right)⋮13\left(đpcm\right)\)

22 tháng 10 2021

\(C=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\\ C=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{1986}\left(3+3^3+3^5\right)\\ C=\left(3+3^3+3^5\right)\left(1+3^6+...+3^{1986}\right)\\ C=273\left(1+3^6+...+3^{1986}\right)\\ C=13\cdot21\left(1+3^6+...+3^{1986}\right)⋮13\\ C=\left(3+3^3+3^5+3^7\right)+\left(3^9+3^{11}+3^{13}+3^{15}\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\\ C=\left(3+3^3+3^5+3^7\right)+3^8\left(3+3^3+3^5+3^7\right)+...+3^{1984}\left(3+3^3+3^5+3^7\right)\\ C=\left(3+3^3+3^5+3^7\right)\left(1+3^8+...+3^{1984}\right)\\ C=2460\left(1+3^8+...+3^{1984}\right)\\ C=41\cdot60\left(1+3^8+...+3^{1984}\right)⋮41\)

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

25 tháng 1 2017

B = ( 3 + 33 + 35 ) + ( 37 + 39 + 311 ) + .... + ( 31987 + 31989 + 31991 )

= 3 ( 1 + 32 + 34 ) + 37 ( 1 + 32 + 34 ) + ... + 31987 ( 1 + 32 + 34 )

= 3.(1 + 9 + 81) + 37 (1 + 32 + 34 ) + ... + 31987.( 1 + 32 + 34 )

= 3.91 + 37.91 + ... + 31987.91

= 91.( 3 + 37 + ... + 31987 )

= 7.13( 3 + 37 + ... + 31987 ) chia hết cho 13 ( đpcm )

CM chia hết cho 41 tương tự nha

10 tháng 10 2021

giúp mình với mình chuẩn bị phải nộp bài rồi T~T 

10 tháng 10 2021

\(B=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{58}\right)⋮7\)

8 tháng 9 2017

= 3( 1  + 3 + 33) + 35(1 + 3 + 33) + ............+31989(1 + 3 + 33

= 13( 3 + 35 +........+ 31989) nên chia hết 13

24 tháng 10 2021

Tham khảo

https://hoc24.vn/cau-hoi/c-3-33-35-31991-chia-het-cho-13-va-41.2492703297984

24 tháng 10 2021

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1989}+3^{1990}+3^{1991}\right)\\ A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+3^4+...+3^{1989}\right)\\ A=13\left(3+3^4+...+3^{1989}\right)⋮13\)