K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

Bài 1:

Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y 

Vì 6x+11y chia hết cho 31, 31y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Mà (6;31)=1 => x+7y chia hết cho 31

Bài 3:

a,n2+3n-13 chia hết cho n+3

=>n(n+3)-13 chia hết cho n+3

=>13 chia hết cho n+3

=>n+3 E Ư(13)={1;-1;13;-13}

=>n E {-2;-4;10;-16}

d,n2+3 chia hết cho n-1

=>n2-n+n-1+4 chia hết cho n-1

=>n(n-1)+(n-1)+4 chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 E Ư(4)={1;-1;2;-2;4;-4}

=>n E {2;0;3;-1;5;-3}

15 tháng 1 2018

Bài 1

Vì 6x+11y chia hết cho 31

=> 6x+11y+31y chia hết cho 31 (31y chia hết cho 31)

=> 6x+42y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Mà (6;31)=1 nên x+7y chia hết cho 31 (đpcm)

15 tháng 1 2018

Bài 3

n 2 + 3n - 13 chia hết cho n + 3

=>n(n+3)-13 chia hết cho n+3

=>13 chia hết cho n+3

=>n+3 thuộc Ư(13)={-1;1;-13;13}

=>n thuộc{-4;-2;-16;10}

n 2 + 3 chia hết cho n - 1

ta có: n-1 chia hết cho n-1

=>(n-1)(n+1) chia hết cho n-1

=>n^2+n-n-1 chia hết cho n-1

=>n^2-1 chia hết cho n-1 mà n2 + 3 chia hết cho n - 1

=>(n^2+3)-(n^2-1) chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 thuộc Ư(4)={-1;1;-2;2;-4;4}

=> n thuộc {0;2;-1;3;-3

10 tháng 11 2017

Giải : Đặt a + 4b = x ; 10a + b = y . Ta biết x \(⋮\)13 cần chứng minh y \(⋮\)13

• Xét biểu thức :

10x - y = 10( a + 4b ) - ( 10a + b ) = 10a + 40b - 10a - b = 39b

Như vậy 10x - y \(⋮\)13

Vì x \(⋮\)13 nên 10x \(⋮\)13 . Suy ra y \(⋮\)13 .

3 tháng 7 2016

a.

\(\left(0,25\right)^3\times32\)

\(=\left(0,25\right)^3\times2^5\)

\(=\left(0,25\right)^3\times2^3\times2^2\) 

\(=\left(0,25\times2\right)^3\times4\)

\(=\left(0,5\right)^3\times4\)

\(=0,125\times4\)

\(=0,5\)

b.

\(\left(-0,125\right)^3\times80^4\)

\(=\left(-0,125\right)^3\times80^3\times80\)

\(=\left(-0,125\times80\right)^3\times80\)

\(=\left(-10\right)^3\times80\)

\(=-1000\times80\)

\(=-80000\)

c.

\(3^{1994}+3^{1993}-3^{1992}\)

\(=3^{1992}\times\left(3^2+3-1\right)\)

\(=3^{1992}\times\left(9+3-1\right)\)

\(=3^{1992}\times11\)

\(\Rightarrow3^{1994}+3^{1993}-3^{1992}⋮11\)

d.

\(4^{13}+32^5-8^8\)

\(=\left(2^2\right)^{13}+\left(2^5\right)^5-\left(2^3\right)^8\)

\(=2^{26}+2^{25}-2^{24}\)

\(=2^{24}\times\left(2^2+2-1\right)\)

\(=2^{24}\times\left(4+2-1\right)\)

\(=2^{24}\times5\)

\(\Rightarrow4^{13}+32^5-8^8⋮5\)

Chúc bạn học tốtok

4 tháng 7 2016

thanhks bạn nhiều 

18 tháng 11 2017

a) \(2010^{100}+2010^{99}\)

\(=2010^{99}\left(2010+1\right)\)

\(=2010^{99}.2011⋮2011\left(dpcm\right)\)

b) \(3^{1994}+3^{1993}-3^{1992}\)

\(=3^{1992}\left(3^2+3-1\right)\)

\(=3^{1992}.11⋮11\left(dpcm\right)\)

c) \(4^{13}+32^5-8^8\)

\(=\left(2^2\right)^{13}+\left(2^5\right)^5-\left(2^3\right)^8\)

\(=2^{26}+2^{25}-2^{24}\)

\(=2^{24}\left(2^2+2-1\right)\)

\(=2^{24}.5⋮5\left(dpcm\right)\)

20 tháng 3 2020

Xem cách làm câu (b);(c);(d)
Bạn tham khảo:

Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath

5 tháng 2 2022

các bạn giúp mik nha

Cho A bằng 5^2021+1 phần 5^2022+1  ;  B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B