Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath
\(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(P=\left(-x^3\left(y^2-z\right)\right)+xy^3-y^3z^2+yz^3-x^2z^3+x^2y^2z^2-xyz\)
\(P=\left(-x^3\left(y^2-z\right)\right)+\left(xy^3-xyz\right)-\left(y^3z^2-yz^3\right)+\left(x^2y^2z^2-x^2z^3\right)\)
\(P=\left(-x^3\left(y^2-z\right)\right)+\left(xy\left(y^2-z\right)\right)-\left(yz^2\left(y^2-z\right)\right)+\left(x^2z^2\left(y^2-z\right)\right)\)
\(P=\left(-x^3+xy-yz^2+x^2z^2\right)\left(y^2-z\right)\)
\(P=\left(\left(x^2z^2-x^3\right)-\left(yz^2-xy\right)\right)\left(y^2-z\right)\)
\(P=\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\left(y^2-z\right)\)
\(P=\left(\left(x^2-y\right)\left(z^2-x\right)\right)\left(y^2-z\right)\)
\(P=\left(a.c\right).b\)
\(P=a.b.c\)
Vậy giá trị của P không phụ thuộc vào biến x;y;z (điều cần chứng minh)
1) x2-4x+5+y2+2y=0
<=>x2-4x+4+y2+2y+1=0
<=>(x-2)2+(x+1)2=0
<=>x-2=0 và x+1=0
<=>x=2 và x=-1
2)2p.p2-(p3-1)+(p+3)2p2-3p5
<=>2p3-p3+1+2p3+6p2-3p5
<=>3p3+6p2-3p5+1
3)(0.2a3)2-0.01a4(4a2-100)=0,04a6-0,04a6+1
=1
4)a) x(2x+1)-x2(x+20)+(x3-x+3)=2x2+x-x3-20x2+x3-x+3
=-18x2+3(đề sai)
b) x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2)=3x3-x2+5x-2x3-3x+16-x3+x2-2x
=16
Vậy x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2) không phụ thuộc vào x
5)a) x(y-z)+y(z-x)+z(x-y)=xy-xz+yz-xy+xz-yz=0
b) x(y+z-yz)-y(z+x-xz)+z(y-x)=xy+xz-xyz-yz-xy+xyz+yz-xz=0
6)M+(12x4-15x2y+2xy2+7)=0
<=>M =-(12x4-15x2y+2xy2+7)
<=>M =-12x4+15x2y-2xy2-7
Bài 1:
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^3-x+3=3\)
\(\)Vậy bt trên ko phụ thuộc vào gt của biến
b) \(x\left(3x^2-x+5\right)-\left(2x^3+3x-16\right)-x\left(x^2-x+2\right)\)
Cái này thì mk ko chứng minh được vì nó còn thừa ra 3x á
Bài 2:
a) \(x\left(y-z\right)+y\left(z-x\right)+z\left(x-y\right)\)
\(=xy-xz+yz-xy+xz-yz\)
\(\left(xy-xy\right)-\left(xz-xz\right)+\left(yz-yz\right)\)
\(=0\left(đpcm\right)\)
b) \(x\left(y+z-yz\right)-y\left(z+x-zx\right)+z\left(y-x\right)\)
\(=xy+xz-xyz-yz-xy+xyz+yz-xz\)
\(=\left(xy-xy\right)+\left(xz-xz\right)-\left(xyz-xyz\right)-\left(yz-yz\right)\)
\(=0\left(đpcm\right)\)
tham khảo
https://olm.vn/hoi-dap/detail/6401290031.html
Gửi riêng
Ta có:
P=x3(z−y2)+y3(x−z2)+z3(y−x2)+xyz(xyz−1)P=x3(z−y2)+y3(x−z2)+z3(y−x2)+xyz(xyz−1)
=x3(z−y2)+xy3+yz3+x2y2z2−y3z2−z3x2−xyz=x3(z−y2)+xy3+yz3+x2y2z2−y3z2−z3x2−xyz
=x3(z−y2)+(xy3−xyz)+(yz3−y3z2)+(x2y2z2−z3x2)=x3(z−y2)+(xy3−xyz)+(yz3−y3z2)+(x2y2z2−z3x2)
=x3(z−y2)+xy(y2−z)+yz2(z−y2)+x2z2(y2−z)=x3(z−y2)+xy(y2−z)+yz2(z−y2)+x2z2(y2−z)
=(y2−z)(−x3+xy−yz2+x2z2)=(y2−z)(−x3+xy−yz2+x2z2)
=(y2−z)[x2(z2−x)−y(z2−x)]=(y2−z)[x2(z2−x)−y(z2−x)]
=(y2−z)(z2−x)(x2−y)=bca
\(A=\left(x+y+z\right)^3+\left(x-y-z\right)^3\)
\(=x^3+3x^2\left(y+z\right)+3x\left(y+z\right)^2+\left(y+z\right)^3+x^3-3x^2\left(y+z\right)+3x\left(y+z\right)-\left(y+z\right)^3\)
\(=2x^3+6x\left(y+z\right)^2\)
\(Q=A-B+2015\)
\(=2x^3+6x\left(y+z\right)^2-2x^3-6x\left(y+z\right)^2+2015\)
=2015