Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có: \(A(x)=x^2-(3m+3)x+m^2\)
\(\Rightarrow A(-1)=1+(3m+3)+m^2=m^2+3m+4\)
\(B(x)=x^3+(5m-7)x+m^2\)
\(\Rightarrow B(2)=8+2(5m-7)+m^2=m^2+10m-6\)
Do đó để \(A(-1)=B(2)\Leftrightarrow m^2+3m+4=m^2+10m-6\)
\(\Leftrightarrow 3m+4=10m-6\Leftrightarrow 10=7m\Leftrightarrow m=\frac{10}{7}\)
=> A(-1) = (-1)2 - (3m + 3).(-1) + m2 = 1 + 3m + 3 + m2 = 3m + 4 + m2
=> B(2) = 23 + (5m - 7).2 + m2 = 8 + 10m - 14 + m2 = -6 + 10m + m2
Để A(-1) = B(2)
=> A(-1) - B(2) = 3m + 4 + m2 + 6 - 10m - m2 = 0
=> -7m + 10 = 0
=> -7m = -10
=> m = 10/7
Vậy ....
\(f\left(-1\right)=\left(-1\right)^2-\left(3m+3\right)\cdot\left(-1\right)\)
\(=1+\left(3m+3\right)\)\(=1+3m+3=4+3m\)
\(g\left(2\right)=2^3+\left(5m-7\right)\)
\(=8+5m-7=1+5m\)
MÀ \(f\left(-1\right)=g\left(2\right)\)\(\Rightarrow4+3m=1+5m\)
\(\Rightarrow4-1=5m-3m\)
\(\Rightarrow2m=3\)
\(\Rightarrow m=\frac{3}{2}\)
a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)
Để đa thức f(x) có nghiệm là -1 khi:
\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)
\(\Rightarrow1+m-1+3m-2=0\)
\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)
b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)
Để đa thức g(x) có nghiệm là 2 khi:
\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)
\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)
\(\Rightarrow4-4m-1-5m+1=0\)
\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)
c) \(h\left(x\right)=-2x^2+mx-7m+3\)
Để đa thức h(x) có nghiệm là -1 khi:
\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)
\(\Rightarrow-2-m-7m+3=0\)
\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)
d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi
\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)
\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)
\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)
-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi
\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)
\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)
\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Ta có f(1) = 12 -(m - 1).1 + 3m - 2 = 2m
g(2) = 22 - 2(m + 1).2 - 5m + 1 = -9m + 1
Vì f(1) = g(2) ⇒ 2m = -9m + 1 ⇒ 11m = 1 ⇒ m = 1/11. Chọn D
Ta có :
\(f\left(1\right)=1-m+1+3m-2=2m\)
\(g\left(2\right)=4-4\left(m+1\right)-5m+1=4-4m-4-5m+1=-9m+1\)
mà \(f\left(1\right)=g\left(2\right)\)hay \(2m=-9m+1\Leftrightarrow11m=1\Leftrightarrow m=\frac{1}{11}\)
Trả lời:
f(1)=g(2)
<=> 12-(m-1).1 +3m -2= 22-2(m+1).2-5m+1
<=>1-m+1+3m=4-4m-4-5m+1
<=> 2m+2=-9m+1
<=> 11m=1
=> m=1/11
1: f(-1)=0
=>1+m-1+3m-2=0 và
=>4m-2=0
=>m=1/2
2: g(2)=0
=>2^2-4(m+1)-5m+1=0
=>4-5m+1-4m-4=0
=>-9m+1=0
=>m=1/9
4: f(1)=g(2)
=>1-(m-1)+3m-2=4-4(m+1)-5m+1
=>1-m+1+3m-2=4-4m-4-5m+1
=>2m-2=-9m+1
=>11m=3
=>m=3/11
3:
H(-1)=0
=>-2-m-7m+3=0
=>-8m=-1
=>m=1/8
5: g(1)=h(-2)
=>1-2(m+1)-5m+1=-8-2m-7m+3
=>-5m+2-2m-2=-9m-5
=>-7m=-9m-5
=>2m=-5
=>m=-5/2