K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2020

2. \(A\left(x\right)=x^2+3x-4=x^2+4x-x-4=x\left(x+4\right)-\left(x+4\right)=\left(x+4\right)\left(x-1\right)\)

A(x) >0 => (x+4)(x-1) cùng dấu

TH1: x+4; x-1 cùng âm \(\hept{\begin{cases}x+4< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -4\\x< 1\end{cases}\Leftrightarrow}x< -4}\)

TH2: x+4;x-1 cùng dương \(\hept{\begin{cases}x+4>0\\x-1>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-4\\x>1\end{cases}\Leftrightarrow}x>1}\)

3. \(A\left(x\right)=\left(x+4\right)\left(x-1\right)\)

A(x) <0 => \(\orbr{\begin{cases}x+4< 0\\x-1< 0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x< -4\\x< 1\end{cases}}\)

Vậy x<-4 hoặc x<1 thì A(x)<0

1: Đặt A(x)=0

\(x^2+3x-4=0\)

\(\Leftrightarrow x^2+4x-x-4=0\)

\(\Leftrightarrow x\left(x+4\right)-\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)

Vậy: x=-4 và x=1 là nghiệm của đa thức \(A\left(x\right)=x^2+3x-4\)

2: Để A(x)>0 thì (x+4)(x-1)>0

Trường hợp 1:

\(\left\{{}\begin{matrix}x+4>0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-4\\x>1\end{matrix}\right.\Leftrightarrow x>1\)

Trường hợp 2:

\(\left\{{}\begin{matrix}x+4< 0\\x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -4\\x< 1\end{matrix}\right.\Leftrightarrow x< -4\)

Vậy: Khi x>1 hoặc x<-4 thì A(x)>0

3: Để A(x)<0 thì (x+4)(x-1)<0

Trường hợp 1:

\(\left\{{}\begin{matrix}x+4>0\\x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-4\\x< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4< x\\x< 1\end{matrix}\right.\Leftrightarrow-4< x< 1\)

Trường hợp 2:

\(\left\{{}\begin{matrix}x+4< 0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -4\\x>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4>x\\x>1\end{matrix}\right.\Leftrightarrow-4>x>1\Leftrightarrow x\in\varnothing\)

Vậy: khi -4<x<1 thì A(x)<0

4: Ta có: \(A\left(x\right)=x^2+3x-4\)

\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}-\frac{25}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{25}{4}\)

Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\forall x\)

Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)

Vậy: Giá trị nhỏ nhất của đa thức \(A\left(x\right)=x^2+3x-4\)\(-\frac{25}{4}\) khi \(x=-\frac{3}{2}\)

30 tháng 3 2023

a)⇔A= x4+2x3-5x+9+2x4-2x3= 3x4-5x+9

  ⇔B= 2x2-6x+2-3x4-2x2+3x-4= -3x4-3x-2

b)A(x)+B(x)= 3x4-5x+9-3x4-3x-2= -8x+7

  A(x)-B(x)= 3x4-5x+9+3x4+3x+2= 6x4-2x+1

c)C(x) có hệ số tự do bằng 0 nên có nghiệm bằng 0

d)A(x)+5x= 3x4+9. Tại x bất kì thì 3x4≥0 ⇔ 3x4+9 ≥ 9 ≥ 0

⇒ H(x) vô nghiệm

14 tháng 4 2016

a) P (x) = 3x-12 = 0

3x = 0+12

3x=12

x = 4

vay nghiem cua da thuc P (x) = 4

b) xet : x^2 > 0 => 2x^2>0

vay da thuc Q(x) khong co nghiem

14 tháng 4 2016

a/ nghiệm cua đa thức p(x) tại giá trị P(x)=0

P(X)=3x-12=0

vậy x=4

b/Q(x)=2x^2+1

vì 2x^2>hoặc =0 suy ra 2x^2+1>hoặc =1 khác 0

vậy đa thức Q(x) không có nghiện

BẠN THẤY ĐÚNG THÌ K CHO MÌNH NHÉ.... BẠN XEM LẠI ĐỀ CÂU C RỒI MÌNH GIẢI CHO

2 tháng 7

Từ a+b+c=0 ta có b= -(a+c) (*)
Thay (*) vào pt bậc 2 ta có
ax^2 - (a+c)x + c = 0
ax^2 - ax -cx + c = 0
ax(x -1)- c(x-1) = 0
(x -1)(ax-c) = 0
Vậy x-1=0 hay x=1
ax-c =0 hay x= c/a

1 tháng 9 2018

c. Thay x = -1 vào A(x) và B(x) ta có:

A(-1) = 0, B(-1) = 2

Vậy x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x) (1 điểm)