Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{x}{y}=\dfrac{4}{9}\Rightarrow\dfrac{x}{4}=\dfrac{y}{9}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{4}=\dfrac{y}{9}=\dfrac{x+y}{4+9}=\dfrac{-30}{13}\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.\left(-\dfrac{30}{13}\right)=\dfrac{-120}{13}\\y=9.\left(-\dfrac{30}{13}\right)=\dfrac{-270}{13}\end{matrix}\right.\)
Vậy....
b, \(\dfrac{4}{x}=\dfrac{7}{y}\Rightarrow\dfrac{x}{4}=\dfrac{y}{7}\)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{2x-y}{2.4-7}=\dfrac{10}{1}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.10=40\\y=7.10=70\end{matrix}\right.\)
Vậy......
c, Theo t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{9}=\dfrac{x-zy+z}{4-9.6+9}=\dfrac{-30}{-41}=\dfrac{30}{41}\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.\dfrac{30}{41}=\dfrac{120}{41}\\y=6.\dfrac{30}{41}=\dfrac{180}{41}\\z=9.\dfrac{30}{41}=\dfrac{270}{41}\end{matrix}\right.\)
Vậy....
a)\(-\dfrac{2}{3}+1=-\dfrac{7}{9}\)
\(-\dfrac{2}{3}x=-\dfrac{7}{9}-1\)
\(-\dfrac{2}{3}x=-\dfrac{16}{9}\)
\(x=-\dfrac{16}{9}:-\dfrac{2}{3}\)
\(x=-\dfrac{16}{9}.-\dfrac{3}{2}\)
\(x=\dfrac{8}{3}\)
b)\(\left|x-\dfrac{5}{3}\right|=\dfrac{1}{2}\)
\(x-\dfrac{5}{6}=\dfrac{-1}{2}\) hoặc \(x-\dfrac{5}{6}=\dfrac{1}{2}\)
\(x=\dfrac{-1}{2}+\dfrac{5}{6}\) hoặc \(x=\dfrac{1}{2}+\dfrac{5}{6}\)
\(x=\dfrac{1}{3}\) hoặc \(x=\dfrac{4}{3}\)
c)\(\left|x+\dfrac{4}{9}\right|-\dfrac{1}{2}=\dfrac{3}{2}\)
\(\left|x+\dfrac{4}{9}\right|=\dfrac{3}{2}+\dfrac{1}{2}\)
\(\left|x+\dfrac{4}{9}\right|=2\)
\(x+\dfrac{4}{9}=2\) hoặc \(x+\dfrac{4}{9}=-2\)
\(x=2-\dfrac{4}{9}\) hoặc \(x=\left(-2\right)-\dfrac{4}{9}\)
\(x=\dfrac{14}{9}\) hoặc \(x=\dfrac{-22}{9}\)
a, \(-\dfrac{2}{3}x+1=-\dfrac{7}{9}\)
\(\dfrac{\left(-2\right)}{3}x=\dfrac{-7}{9}+\dfrac{-9}{9}\)
\(x=\dfrac{-16}{9}.\dfrac{-3}{2}=\dfrac{-8}{3}.\dfrac{-1}{1}\)
\(x=\dfrac{8}{3}\)
\(\dfrac{72-x}{7}=\dfrac{x-4}{9}\)
\(\Rightarrow9\left(72-x\right)=7\left(x-4\right)\)
\(\Rightarrow648-9x=2x-28\)
\(\Rightarrow11x-28=648\)
\(\Rightarrow11x=676\Rightarrow x=\dfrac{676}{11}\)
\(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)
\(\Rightarrow7\left(37-x\right)=3\left(x+13\right)\)
\(\Rightarrow259-7x=3x+39\)
\(\Rightarrow10x+39=259\)
\(\Rightarrow10x=220\Rightarrow x=22\)
\(\dfrac{x+4}{20}=\dfrac{5}{x+4}\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow\left(x+4\right)^2=\pm10^2\)
\(\Rightarrow\left[{}\begin{matrix}x+4=10\Rightarrow x=6\\x+4=-10\Rightarrow x=-14\end{matrix}\right.\)
\(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=\left(x-2\right)\left(x+2\right)\)
\(\Rightarrow x\left(x+3\right)-1\left(x+3\right)=x\left(x+2\right)-2\left(x+2\right)\)
\(\Rightarrow x^2+3x-x-3=x^2+2x-2x-4\)
\(\Rightarrow x^2+2x-3=x^2-4\)
\(\Rightarrow2x-3=-4\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\dfrac{1}{2}\)
1
\(A=\frac{2019^{2019}+1}{2019^{2020}+1}< \frac{2019^{2019}+1+2018}{2019^{2020}+1+2018}=\frac{2019^{2019}+2019}{2019^{2020}+2019}=\frac{2019\left(2019^{2018}+1\right)}{2019\left(2019^{2019}+1\right)}\)
\(=\frac{2019^{2018}+1}{2019^{2019}+1}\)
2
\(M=\frac{100^{101}+1}{100^{100}+1}< \frac{100^{101}+1+99}{100^{100}+1+99}=\frac{100^{101}+100}{100^{100}+100}=\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)
\(=\frac{100^{100}+1}{100^{99}+1}=N\)
mình tự bình loạn các bạn ạ