Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
\(A=\left\{1;-4\right\}\)
\(B=\left\{2;-1\right\}\)
a) Với mọi x thuộc A đều thuộc E \(\Rightarrow A\subset E\)
Với mọi x thuộc B đều thuộc E \(\Rightarrow B\subset E\)
b) \(A\cap B=\varnothing\)
\(\Rightarrow E\backslash\left(A\cap B\right)=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
\(A\cup B=\left\{-4;-1;1;2\right\}\)
\(\Rightarrow E\backslash\left(A\cup B\right)=\left\{-5;-3;-2;0;3;4;5\right\}\)
\(\Rightarrow E\backslash\left(A\cup B\right)\subset E\backslash\left(A\cap B\right)\)
a) Ta có:
\(f\left( 1 \right) = 1 + 1 = 2\)
\(f\left( 2 \right) = 2 + 1 = 3\)
\( \Rightarrow f\left( 2 \right) > f\left( 1 \right)\)
b) Ta có:
\(f\left( {{x_1}} \right) = {x_1} + 1;f\left( {{x_2}} \right) = {x_2} + 1\)
\(\begin{array}{l}f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \left( {{x_1} + 1} \right) - \left( {{x_2} + 1} \right)\\ = {x_1} - {x_2} < 0\end{array}\)
Vậy \({x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\).
Lời giải:Đặt $A=f(1)=a+b+c; B=f(-1)=a-b+c; C=f(0)=c$
Theo đề bài: $|A|, |B|, |C|\leq 1$
\(|a|+|b|+|c|=|\frac{A+B}{2}-C|+|\frac{A-B}{2}|+|C|\)
\(\leq |\frac{A+B}{2}|+|-C|+|\frac{A-B}{2}|+|C|=|\frac{A}{2}|+|\frac{B}{2}|+|C|+|\frac{A}{2}|+|\frac{-B}{2}|+|C|\)
\(=|A|+|B|+2|C|\leq 1+1+2=4\) (đpcm)
a) Cách viết: \(a \subset X\) Sai vì \(\,a\) (là một phần tử của A) không phải là một tập hợp do đó ta phải dùng kí hiệu “\( \in \)” chứ không phải “\( \subset \)”.
Cách viết đúng: \(a \in X\)
b) Cách viết \(\left\{ a \right\} \subset X\) đúng, vì \(\left\{ a \right\}\)là một tập hợp, có duy nhất một phần tử là \(\,a\) và \(a \in X\)
=> Tập hợp \(\left\{ a \right\}\) là một tập con của \(X\).
c) Cách viết \(\emptyset \in X\) sai vì:
\(\emptyset \) là một tập hợp (tập hợp rỗng), không phải là một phần tử.
Cách viết đúng: \(\emptyset \subset X\)( Tập hợp rỗng là tập con của mọi tập hợp).
a.
\(\forall x\in A\) ta có: \(f\left(x\right)\in f\left(A\right)\)
\(\Rightarrow A\subset f^{-1}\left(f\left(A\right)\right)\)
b.
Ta có: \(\forall x\in f^{-1}\left(B\right)\Rightarrow y=f\left(x\right)\in B\Rightarrow f\left(f^{-1}\left(B\right)\right)\subset B\)
Bạn ơi, cái quan trọng là vì sao \(f\left(x\right)\in f\left(A\right)\) lại \(A\subset f^{-1}\left(f\left(A\right)\right)\) được?