K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right).....\left(\frac{1}{100^2}-1\right)\)

=>  \(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{100^2}\right)\)

     \(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.....\frac{100^2-1}{100^2}\)

     \(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.....\frac{99.101}{100^2}\)

     \(=\frac{1.2....99}{2.3....100}.\frac{3.4....101}{2.3....100}\)

     \(=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)

=>  \(A=-\frac{101}{200}< -\frac{1}{2}\)

13 tháng 7 2019

#)Giải :

a)\(2009^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-15^3\right)}=2009^{\left(1000-1^3\right)...\left(1000-10^3\right)...\left(1000-15^3\right)}=2009^0=1\)

b)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)

27 tháng 9 2018

\(A=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot...\cdot\left(\frac{1}{2014^2}-1\right)\)

\(A=\frac{-3}{2^2}\cdot\frac{-8}{3^2}\cdot\frac{-15}{4^2}\cdot...\cdot\frac{-2014^2+1}{2014^2}\)

\(A=\frac{1\cdot\left(-3\right)}{2^2}\cdot\frac{2\cdot\left(-4\right)}{3^2}\cdot\frac{3\cdot\left(-5\right)}{4^2}\cdot...\cdot\frac{2013\cdot\left(-2015\right)}{2014^2}\)

\(A=\frac{1\cdot2\cdot3\cdot...\cdot2013}{2\cdot3\cdot4\cdot...\cdot2014}\cdot\frac{\left(-3\right)\cdot\left(-4\right)\cdot\left(-5\right)\cdot...\cdot\left(-2015\right)}{2\cdot3\cdot4\cdot...\cdot2014}\)

\(A=\frac{1}{2014}\cdot\frac{-2015}{2}\)

\(A=\frac{-2015}{4028}\)