\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)

\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)

3 tháng 5 2018

\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{400}-1\right)\)

\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{400}\right)\)

\(-A=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{399}{400}\)

\(-A=\frac{1\cdot3}{2\cdot2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot...\cdot\frac{19.21}{20.20}\)

\(-A=\frac{1\cdot2\cdot3\cdot...\cdot19}{2\cdot3\cdot4\cdot...\cdot20}\cdot\frac{3\cdot4\cdot5\cdot...\cdot21}{2\cdot3\cdot4\cdot...\cdot20}\)

\(-A=\frac{1}{20}\cdot\frac{21}{2}=\frac{21}{40}>\frac{20}{40}=\frac{1}{2}\)

\(-A>\frac{1}{2}\Rightarrow A< \frac{1}{2}\)

7 tháng 3 2018

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1000}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{999}{1000}\)

\(=\frac{1}{1000}\)

chúc

bn

hk

tốt

26 tháng 6 2020

help me

26 tháng 6 2020

a)  45/343

b)  -1/4

c)  24/13

d)  -4 

bạn cho mình đi 

8 tháng 3 2019

Mk ko biết lm nhưng cứ k thoải mái nha

SORRY

3 tháng 5 2017

Ta có: \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

\(=\left(-\frac{1.3}{2.2}\right).\left(-\frac{2.4}{3.3}\right)...\left(-\frac{99.101}{100.100}\right)\)

\(=-\frac{1}{2}.\frac{101}{100}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)

Vậy \(A< -\frac{1}{2}\)

29 tháng 5 2017

\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)...\left(\frac{1}{10000}-1\right)\)

\(=\frac{-3}{4}\cdot\frac{-8}{9}\cdot\frac{-15}{16}\cdot...\cdot\frac{-9999}{10000}\)

\(=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot...\cdot\frac{-99\cdot111}{100.100}\)

\(=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot...\cdot\frac{99\cdot111}{100\cdot100}\)

\(=\frac{\left(1\cdot2\cdot3\cdot4\cdot...\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot6\cdot...\cdot111\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot100\right)^2}\)

\(=\frac{101}{2\cdot100}\)

\(=\frac{101}{200}>\frac{1}{2}\)

7 tháng 3 2018

\(C=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.........\frac{2499}{2500}\)

\(=\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}......\frac{49.51}{50^2}\)

\(=\frac{2.3.4....49}{3.4.5....50}.\frac{4.5.6....51}{3.4.5....50}\)

\(=\frac{1}{25}.17=\frac{17}{25}\)

7 tháng 3 2018

\(a)\) \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{1000}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{999}{1000}\)

\(A=\frac{1.2.3.....999}{2.3.4.....1000}\)

\(A=\frac{1}{1000}.\frac{2.3.4.....999}{2.3.4.....999}\)

\(A=\frac{1}{1000}\)

Vậy \(A=\frac{1}{1000}\)