\(A\left(1;2\right);B\left(-3;1\right);C\left(4;-2\right)\). Tìm tập hợp các điểm M s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Giải bài 2 trang 93 SGK hình học 10 | Giải toán lớp 10

30 tháng 3 2017

Giả sử M có tọa độ (x;y), ta có:

MA2= (x - 1)2 + (y + 2)2 ;

MA2= (x + 3)2 + (y - 1)2

MC2= (x - 4)2 + (y + 2)2

MA2 + MB2 = MC2 nên x2 + y2 + 12x - 10y - 5 = 0.

Vậy { M } là đường tròn tâm I (-6;5), bán kính R = \(\sqrt{66}\)

30 tháng 5 2017

a) \(MA^2+MB^2=MC^2\)

\(\Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} = {\left( {x - 4} \right)^2} + {\left( {y + 2} \right)^2}\)

\(\Leftrightarrow {x^2} + {y^2} + 12x - 10y - 5 = 0\)

\(\Leftrightarrow {\left( {x + 6} \right)^2} + {\left( {y - 5} \right)^2} = 66\)

Vậy tập hợp các điểm M là một đường tròn.

b) Tâm là điểm (-6 ; 5) bán kính bằng \(\sqrt{66}\)

5 tháng 8 2019

\(\text{a) }\left|2\overrightarrow{MA}+3\overrightarrow{MB}\right|=\left|3\overrightarrow{MB}-2\overrightarrow{MC}\right|\\ \Rightarrow\left(2\overrightarrow{MA}+3\overrightarrow{MB}\right)^2=\left(3\overrightarrow{MB}-2\overrightarrow{MC}\right)^2\\ \Rightarrow\left(2\overrightarrow{MA}+3\overrightarrow{MB}\right)^2-\left(3\overrightarrow{MB}-2\overrightarrow{MC}\right)^2=0\\ \Rightarrow\left(2\overrightarrow{MA}+3\overrightarrow{MB}-3\overrightarrow{MB}+2\overrightarrow{MC}\right)\left(2\overrightarrow{MA}+3\overrightarrow{MB}+3\overrightarrow{MB}-2\overrightarrow{MC}\right)=0\\ \Rightarrow\left(2\overrightarrow{MA}+2\overrightarrow{MC}\right)\left[2\left(\overrightarrow{MA}-\overrightarrow{MC}\right)+6\overrightarrow{MB}\right]=0\\ \Rightarrow\left(\overrightarrow{MA}+\overrightarrow{MC}\right)\left(\overrightarrow{CA}+3\overrightarrow{MB}\right)=0\\ \Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}+\overrightarrow{MC}=0\\\overrightarrow{CA}+3\overrightarrow{MB}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}=-\overrightarrow{MC}\\\overrightarrow{CA}=-3\overrightarrow{MB}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}M;A;C\text{ thẳng hàng };M\text{ nằm giữa }A;C\\MA=MC\end{matrix}\right.\\\left\{{}\begin{matrix}CA//MB\\CA=3MB\end{matrix}\right.\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}M\text{ là trung điểm }AC\\CA//MB;CA=3MB\end{matrix}\right.\)

Vậy......

5 tháng 8 2019

\(b\text{) }\left|4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\\ \Rightarrow\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)^2=\left(2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right)^2\\ \Rightarrow\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)^2-\left(2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right)^2=0\\ \Rightarrow\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}-2\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right)=0\\ \Rightarrow\left(2\overrightarrow{MA}+2\overrightarrow{MB}+2\overrightarrow{MC}\right)\cdot6\overrightarrow{MA}=0\\ \Rightarrow\overrightarrow{MA}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)=0\\ \Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}=0\\\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}M\equiv A\\M\text{ là trọng tâm }\Delta ABC\end{matrix}\right.\)Vậy...........

6 tháng 11 2020

d, Lấy P, Q sao cho \(4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0};2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}=\overrightarrow{0}\)

Ta có \(\left|4\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|4\text{ }\overrightarrow{MP}+4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}\right|=\left|4\overrightarrow{MP}\right|=4MP\)

\(\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|=\text{ }\left|2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}\right|=0\)

\(\Rightarrow4MP=0\Rightarrow M\equiv P\)

6 tháng 11 2020

Gọi G là trọng tâm tam giác, I là trung điểm BC, N là trung điểm của AC

a, Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\)

\(\Rightarrow MG=MI\Rightarrow M\) thuộc đường trung trực của BC

b, \(\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MN}\right|=2MN\)

\(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{BA}\right|=BA\)

\(\Rightarrow2MN=BA\Rightarrow M\in\left(N;\frac{BA}{2}\right)\)

23 tháng 10 2018

a) gọi I là trung điểm của đoạn thẳng AB

=> IA+ IB=0

| 2MI|= |BA|

|MI|= 1/2|BA|

=> M thuộc đường tròn tâm I, bán kính =1/2 BA

23 tháng 10 2018

B) gọi G là trọng tâm của tam giác ABC

=> GA+ GB+ GC=0

gọi I là trung điểm của đoạn thẳng AB

=> IA+ IB=0

| 3MG|= 3/2| 2 MI|

3| MG|= 3| MI|

| MG|= | MI|

=> M thuộc đường trung trực của đoạn thẳng GI

5 tháng 8 2019

\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+\overrightarrow{MC}\right|\\ \Rightarrow\left(\overrightarrow{MA}+\overrightarrow{MB}\right)^2-\left(\overrightarrow{MA}+\overrightarrow{MC}\right)^2=0\\ \Rightarrow\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MA}+\overrightarrow{MC}\right)\left(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MA}-\overrightarrow{MC}\right)=0\\ \Rightarrow\left(2\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)\left(\overrightarrow{MB}-\overrightarrow{MC}\right)=0\)

Gọi I là trung điểm BC

\(\Rightarrow\left(2\overrightarrow{MA}+2\overrightarrow{MI}\right)\cdot\overrightarrow{CB}=0\\ \Rightarrow\left[{}\begin{matrix}\overrightarrow{CB}=0\\2\overrightarrow{MA}+2\overrightarrow{MI}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}C\equiv B\\\overrightarrow{MA}=-\overrightarrow{MI}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}C\equiv B\\M\text{ là trung điểm }AI\end{matrix}\right.\)

Vậy với \(C\equiv B\) thì M tùy ý

Với \(C\ne B\) thì M là trung điểm đường trung tuyến ứng với BC của \(\Delta ABC\)

20 tháng 6 2020

M \(\varepsilon\Delta\)=> M ( 1+ t; 2 + t)

MA2 = (t + 2)2 + t2 = 2 t2 + 4t + 4

MB2 = (t - 2)2 + (t + 1)2 = 2t2 - 2t + 5

MA2 +MB2 = 2t2 + 4t + 4 + 2t2 - 2t + 5 = 4t2 + 2t + 9 = 4t2 + 2.2t.1/2 + 1/4 + 35/4

= ( 2t + 1/2 )2 + 35/4 >= 35/4

vậy min của MA2 + MB2 = 35/4 <=> t = -1/4 => M (3/4 ; 7/4)

#mã mã#