Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) A= 2a2b2+2a2c2+2b2c2-a^4-b^4-c^4
= 2a2b2+2a2c2+2b2c2-(a^4+b^4+c^4)
= 2a2b2+2a2c2+2b2c2 -[(a2+b2+c2)2+2a2b2+2a2c2+2b2c2 )
= 2a2b2+2a2c2+2b2c2 -(a2+b2+c2)2-2a2b2-2a2c2-2b2c2
= (a2+b2+c2)2 >0
\(A=5n^3+15n^2+10n\)
\(=5n\left(n^2+2\times n\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right)\)
\(=5n\left[\left(n+\frac{3}{2}\right)^2-\frac{1}{4}\right]\)
\(=5n\left[\left(n+\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2\right]\)
\(=5n\left(n+\frac{3}{2}+\frac{1}{2}\right)\left(n+\frac{3}{2}-\frac{1}{2}\right)\)
\(=5n\left(n+2\right)\left(n+1\right)\)
Tích của 3 số nguyên liên tiếp chia hết cho 6
=> A vừa chia hết cho 6 vừa chia hết cho 5
=> A chia hết cho 30 (đpcm)
\(a_k=\frac{3k^2+3k+1}{\left(k^2+k\right)^3}=\frac{k^3+3k^2+3k+1-k^3}{k^3\left(k+1\right)^3}=\frac{\left(k+1\right)^3}{k^3\left(k+1\right)^3}-\frac{k^3}{k^3\left(k+1\right)^3}=\frac{1}{k^3}-\frac{1}{\left(k+1\right)^3}\)
Thay giá trị cho k vào biểu thức trên được:
\(a1=\frac{1}{1^3}-\frac{1}{2^3}\)
\(a2=\frac{1}{1^3}-\frac{1}{2^3}\)
.....
\(a9=\frac{1}{1^3}-\frac{1}{2^3}\)
Nên \(1+a1+a2+...+a9=1+\left(\frac{1}{1^3}-\frac{1}{2^3}\right)+\left(\frac{1}{2^3}-\frac{1}{3^3}\right)+...+\left(\frac{1}{9^3}-\frac{1}{10^3}\right)=2-\frac{1}{10^3}=\frac{1999}{1000}\)