Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,b,c∈[0,1]⇒b≥b2;c≥c3
Ta có:
a,b,c∈[0,1]⇒(1−a)(1−b)(1−c)≥0
⇔1−a−b−c+ab+bc+ca−abc≥0
⇔a+b+c−ab−bc−ca+abc≤1
⇒a+b2+c3−ab−bc−ca≤1
⇒đpcm
Dấu "=" xảy ra khi trong a,b,ccó 1 số bằng 1, 1 số bằng 0, số còn lại là 1 hoặc 0
Vì \(a,b,c\le1\) nên ta có:
\(\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-a-b-c+ab+bc+ca-abc\ge0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\)
Mà ta có: \(\hept{\begin{cases}b^2\le b\\c^3\le c\\1-abc\le1\end{cases}}\)
Từ đó suy ra:
\(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1-abc\le1\)
Ta có ĐPCM
2.
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(P=\frac{3x}{2}+\frac{6}{x}+\frac{y}{2}+\frac{8}{y}+\frac{3x}{2}+\frac{3y}{2}\)
\(P=\left(\frac{3x}{2}+\frac{6}{x}\right)+\left(\frac{y}{2}+\frac{8}{y}\right)+\frac{3}{2}\left(x+y\right)\)
\(P\ge2\sqrt{\frac{18x}{2x}}+2\sqrt{\frac{8y}{2y}}+\frac{3}{2}.6=19\)
\(P_{min}=19\) khi \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
1.
Do \(0\le a;b;c\le1\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-abc-a-b-c+ab+bc+ca\ge0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)
Mặt khác \(0\le a;b;c\le1\Rightarrow\left\{{}\begin{matrix}b^2\le b\\c^3\le c\end{matrix}\right.\)
\(\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị
không phải nha!
là a,b,c ở trong khoảng từ 0 đến 1
Ở trong bài này thì dấu "=" xảy ra
khi (1-a)(1-b)(1-c) = 0 thì 1 trog 3 số bằng 1
abc = 0 thì có 1 số bằng 0 ( giả sử a = 0, b = 1 )
thay vào BĐT cuối thì ta đc :
\(1+c^3-c=1\)
\(\Rightarrow c\left(c+1\right)\left(c-1\right)=0\Rightarrow\left[{}\begin{matrix}c=0\\c=-1\\c=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}c=1\\c=0\end{matrix}\right.\)
Như vậy trog 3 số a,b,c có 2 số bằng 0, 1 số bằng 1 hoặc 1 số bằng 0, 2 số bằng 1.
Đặt a + b + c = t \(\left(3\ge t\ge\sqrt{3}\right)\).
Ta có \(P=\dfrac{t^2-3}{2}+3t=\dfrac{t^2+6t-3}{2}=\dfrac{\left(t-\sqrt{3}\right)\left(t+6+\sqrt{3}\right)+6\sqrt{3}}{2}\ge3\sqrt{3}\).
Đẳng thức xảy ra khi a = 0, b = \(\sqrt{3}\), c = 0.
\(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\)
\(\Leftrightarrow a^2+b^2+c^2-2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=4\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2=2^2\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(\frac{a+b+c}{2}\right)^2=ab+bc+ac\)
Suy ra ab+bc+ca là số chính phương
mình làm dc rồi nh