K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

mịa c đâu ra vậy

9 tháng 8 2017

Ta có :

\(a-\sqrt{a}+\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0\forall a\ge0\Rightarrow a+\frac{1}{4}\ge\sqrt{a}\)

\(b-\sqrt{b}+\frac{1}{4}=\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\forall b\ge0\Rightarrow b+\frac{1}{4}\ge\sqrt{b}\)

\(\Rightarrow a+\frac{1}{4}+b+\frac{1}{4}\ge\sqrt{a}+\sqrt{b}\)

\(\Rightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)(đpcm)

24 tháng 7 2017

Áp dụng BĐT căn trung bình bình phương ta có: 

*BĐT này mk ko biết rõ tên nó viết cả ra :v, dạng tổng quát nó đây (kiểu AM-GM ấy)*

 với a1;a2;...an ko âm thì \(\sqrt{\frac{a_1^2+b_1^2+....+a_n^2}{n}}\ge\frac{a_1+a_2+...+a_n}{n}\)

\(VT=\sqrt{\frac{a+b}{2}}=\sqrt{\frac{\sqrt{a^2}+\sqrt{b^2}}{2}}\)

\(\ge\frac{\sqrt{a}+\sqrt{b}}{2}=VP\)

Dấu "=" xảy ra khi \(a=b\)

17 tháng 7 2017

Biến đổi tương đương:

\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\) (1)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)

\(\Leftrightarrow2a+2b-a-2\sqrt{ab}-b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng

=> (1) đúng

Dấu "=" xảy ra khi a = b

11 tháng 4 2020

GIÚP MK NHANH NHÉ

8 tháng 11 2015

\(bdt\Leftrightarrow\left(\frac{a^3+b^3}{2}\right)^2\ge\left(\frac{a^2+b^2}{2}\right)^3\Leftrightarrow\frac{a^6+b^6+2a^3b^3}{4}\ge\frac{a^6+b^6+3a^4b^2+3a^2b^4}{8}\)

\(\Leftrightarrow a^6+b^6+4a^3b^3\ge3a^4b^2+3a^2b^4\)

Áp dụng bất đẳng thức trung bình cộng - trung bình nhân:

\(a^6+a^3b^3+a^3b^3\ge3\sqrt[3]{a^6.\left(a^3b^3\right)^2}=3a^4b^2\)

\(b^6+a^3b^3+a^3b^3\ge3\sqrt[3]{b^6.\left(a^3b^3\right)^2}=3a^2b^4\)

Cộng 2 bất đẳng thức trên theo vế ta có đpcm.

8 tháng 11 2015

HD: Mũ 6 hai vế nên nhé.

24 tháng 6 2017

Ta có :

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

<=> \(a+b-2\sqrt{ab}\ge0\)

<=> \(a+b\ge2\sqrt{ab}\)

<=> \(\frac{a+b}{2}\ge\sqrt{ab}\)

6 tháng 8 2019

Áp dụng cô si

\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\\\frac{1}{c}+\frac{1}{b}\ge2\sqrt{\frac{1}{cb}}\\\frac{1}{a}+\frac{1}{c}\ge2\sqrt{\frac{1}{ac}}\end{cases}}\)\(\Rightarrow\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}\)

\("="\Leftrightarrow a=b=c=0\)

\(\hept{\begin{cases}\sqrt{x}\le\frac{x+1}{2}\\\sqrt{y-1}\le\frac{y-1+1}{2}\\\sqrt{z-2}\le\frac{z-2+1}{2}\end{cases}}\)\(\Rightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+1+y-1+1+z-2+1}{2}\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+y+z}{2}\)

\("="\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)

18 tháng 10 2020

Sửa ĐK của c) : a, b, c > 0

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\)

\(\frac{1}{b}+\frac{1}{c}\ge2\sqrt{\frac{1}{bc}}=\frac{2}{\sqrt{bc}}\)

\(\frac{1}{c}+\frac{1}{a}\ge2\sqrt{\frac{1}{ca}}=\frac{2}{\sqrt{ca}}\)

Cộng các vế tương ứng

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ab}}+\frac{2}{\sqrt{bc}}+\frac{2}{\sqrt{ca}}\)

=> \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)

=> đpcm

Đẳng thức xảy ra khi a = b = c