K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2020

bạn xem lại đề coi ?

19 tháng 1 2020

đây là đề bài lấy từ đề thi huyện năm 2015-2016 của trường minh nha 

21 tháng 4 2020

@Mai.T.Loan câu a pha cuối hơi tắt đó nhìn khó hiểu lắm

còn câu b kl sai r nha

21 tháng 4 2020
https://i.imgur.com/K1Kg6qE.jpg
30 tháng 6 2016

a/ \(Q=\left[\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right].\frac{2}{\sqrt{x}-1}\)

       \(=\frac{x+2-x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\left(\sqrt{x}-1\right)}\)

       \(=\frac{\left(x-2\sqrt{x}+1\right).2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2.2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\) 

       \(=\frac{2}{x+\sqrt{x}+1}\)

b/ Ta có: \(x+\sqrt{x}+1=x+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

                      \(\Rightarrow Q=\frac{2}{x+\sqrt{x}+1}>0\)

                                                                                  Vậy Q > 0

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

6 tháng 12 2018

a,\(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(P=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2}{x+\sqrt{x}+1}\)

Vậy \(P=\dfrac{2}{x+\sqrt{x}+1}\)

b, Ta có \(x+\sqrt{x}+1=\left(x+2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)Suy ra \(\dfrac{2}{x+\sqrt{x}+1}>0\forall x>0,x\ne1\)

hay \(P>0\forall x>0,x\ne1\)(đpcm)

17 tháng 10 2020

Câu 1:

$P=\dfrac{2x+4\sqrt x+2}{\sqrt x}$ `(đkxđ:` $x>0$)

Xét $P-6=\dfrac{2.x+4.\sqrt[]x+2}{\sqrt[]x}-6=\dfrac{2x+4.\sqrt[]x-6.\sqrt[]x+2}{\sqrt[]x}$

$=\dfrac{2.x-2.\sqrt[]x+2}{\sqrt[]x}$

$=\dfrac{2.(x-\sqrt[]x+1)}{\sqrt[]x}$

Mà $x-\sqrt[]x+1=(\sqrt[]x-\dfrac{1}{2})^2+\dfrac{3}{4}>0∀x>0$
$⇒2.(x-\sqrt[]x+1)>0∀x>0$

Mà $\sqrt[]x>0∀x>0$

$⇒\dfrac{2.(x-\sqrt[]x+1)}{\sqrt[]x}>0∀x>0$
hay $P-6>0⇒P>6∀x>0$ (đpcm)

Câu 2:

$P=\dfrac2{x+\sqrt x+1}$ (đkxđ: $x\ge0$)

Ta có $x+\sqrt[]x+1=(\sqrt[]x+\dfrac{1}{2})^2+\dfrac{3}{4}>0∀x\ge0$

$⇒P>0∀x\ge0$

Xét $P-2=\dfrac{2}{x+\sqrt[]x+1}-2=\dfrac{2-2.x-2.\sqrt[]x-2}{x+\sqrt[]x+1}=\dfrac{-2(x+\sqrt[]x)}{x+\sqrt[]x+1}$

Mà $x>0⇒\sqrt[]x>0⇒x+\sqrt[]x>0$

$⇒-2(x+\sqrt[]x)<0$

$⇒\dfrac{-2(x+\sqrt[]x)}{x+\sqrt[]x+1}<0$

$⇒P-2<0$

$⇒P<2$

Vậy $0<P<2$

2 tháng 8 2021

\(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\)

\(=\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-1}\)

b) \(\frac{A}{B}=\frac{\sqrt{x}+4}{\sqrt{x-1}}:\frac{1}{\sqrt{x}-1}=\sqrt{x}+4\)

Để \(\frac{A}{B}\ge\frac{x}{4}+5\)

\(\Leftrightarrow\sqrt{x}+4\ge\frac{x}{4}+5\)

\(\Leftrightarrow4\sqrt{x}+16\ge x+20\)

\(\Leftrightarrow x-4\sqrt{x}+4\le0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2\le0\)

Mà \(\left(\sqrt{x}-2\right)^2\ge0;\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2=0\)

\(\Leftrightarrow x=4\)

Vậy ...