K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

Ta có : A=\(\frac{196}{197}\)+\(\frac{197}{198}\)>\(\frac{196}{198}+\frac{197}{198}\)
              \(\frac{196+197}{198}\)>B=\(\frac{197+197}{197+198}\)
Vậy A>B

17 tháng 4 2016

Ta có:  B=\(\frac{196+197}{197+198}=\frac{196}{197+198}+\frac{197}{197+198}\)

Mà \(\frac{196}{197}>\frac{196}{197+198};\frac{197}{198}>\frac{197}{197+198}=>\frac{196}{197}+\frac{197}{198}>\frac{196}{197+198}+\frac{197}{197+198}\)

=> A>B

15 tháng 3 2016

B= \(\frac{1}{199}\) + \(\frac{2}{198}\) + ... + \(\frac{198}{2}\) + \(\frac{199}{1}\)

B= ( \(\frac{1}{199}\) + 1) + ( \(\frac{2}{198}\) +1) +...+ ( \(\frac{198}{2}\) +1) +1 ( Mình tách 199 ra thành 199 số hạng rồi cộng thêm vào mỗi phân số)

B= \(\frac{200}{199}\) + \(\frac{200}{198}\) + \(\frac{200}{197}\) +...+\(\frac{200}{2}\)

B= 200( \(\frac{1}{199}\) + \(\frac{1}{198}\) +...+ \(\frac{1}{2}\) ) 

B= 200 ( \(\frac{1}{2}\) + \(\frac{1}{3}\) +...+ \(\frac{1}{198}\) + \(\frac{1}{199}\) ) = 200 A

Ta thấy A=1A, B=200A Suy ra \(\frac{A}{B}\) = \(\frac{1}{200}\)

 

15 tháng 3 2016

Giúp mình đi. Mai phải nộp bài rồi khocroi

17 tháng 3 2016

Bạn ơi, của bạn giống của mình mà, đăng làm gì, nếu cùng chung 1 kết quả thì bạn tick đúng đi.

17 tháng 3 2016

Bạn ơi, bài này có người hỏi rồi và mình cũng trả lời rồi

14 tháng 2 2016

copy trên mục toán vui của Olm

6 tháng 3 2016

Ta có diện tích tam giác ACD bằng diện tích tam giác BCD vì có chung đáy CD và đường cao hạ từ A và B xuống đáy CD bằng nhau.

Mà hai tam giác này có OCD chung nên diện tích phần còn lại bằng nhau, hay là diện tích AOD bằng diện tích BOC.

Gọi a = diện tích AOD = diện tích BOC.

Ta có   (hai tam giác AOD và AOB có chung đường cao hạ từ A)

Và  (hai tam giác COD và COB có chung đường cao hạ từ C)

Suy ra: , hay là:  

Vậy 

17 tháng 3 2016

Ta có:(bz-cy)/a=(cx-az)/b=(ay-bx)/c

<=>(abz-acy)/a2=(bcx-abz)/b2=(acy-bcx)/c2

Theo t/c dãy tỉ số=nhau:

(abz-acy)/a2=(bcx-abz)/b2=(acy-bcx)/c2=(abz-acy+bcx-abz+acy-bcx)/a2+b2+c2=0/a2+b2+c2=0

Do đó: bz-cy=cx-az=ay-bx=0

*bz-cy=0<=>bz=cy<=>y/b=z/c(1)

*cx-az=0<=>cx=az<=>x/a=z/c(2)

*ay-bx=0<=>ay=bx<=>x/a=y/b(3)

Từ (1);(2);(3)=>x/a=y/b=z/c(đpcm)

17 tháng 3 2016

Dạng này dễ

c nhân a vào tỉ số 1;nhân  b vào t/s 2;nhân c vào t/s 3, áp dụng dtsbn là đc

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)

23 tháng 3 2016

Từ dãy tỉ số bằng nhau đó, ta được:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

hay \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)

Do đó,  \(\frac{a+b+c+d}{a}=4\) => a=\(\frac{a+b+c+d}{4}\)

               \(\frac{a+b+c+d}{b}=4\) =>b=\(\frac{a+b+c+d}{4}\)

               \(\frac{a+b+c+d}{c}=4\) =>c=\(\frac{a+b+c+d}{4}\)

              \(\frac{a+b+c+d}{d}=4\) => d=\(\frac{a+b+c+d}{4}\)

=>a=b=c=d

a+bc+d

Do đó, M=\(\frac{a+b}{c+d}+\frac{b+c}{c+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)

Vậy M có giá trị là 4

10 tháng 3 2016

Chưa học

14 tháng 4 2016

2016