Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}=\frac{5}{6}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)
Mình ko chép đề nx nha
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{999}-\frac{1}{1000}\)
A = \(\frac{1}{1}-\frac{1}{1000}\)
A = \(\frac{1000}{1000}-\frac{1}{1000}=\frac{999}{1000}\)
B = \(\frac{1}{501}-\frac{1}{1000}+\frac{1}{502}-\frac{1}{999}+...\frac{1}{1}+...+\frac{1}{999}-\frac{1}{502}+\frac{1}{1000}+\frac{1}{501}\)
B = \(\frac{1}{501}-\frac{1}{501}+\frac{1}{1000}-\frac{1}{1000}+\frac{1}{502}-\frac{1}{502}+\frac{1}{999}-\frac{1}{999}+...+\frac{1}{1}\)
B = \(\frac{1}{1}=1\)
Vậy \(\frac{A}{B}=\frac{\frac{999}{1000}}{1}=\frac{999}{1000}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Nhầm tưởng tính tích :v
Ta có :
\(B=\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}+\frac{1}{100}< \frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}=50.\frac{1}{51}=\frac{50}{51}< \frac{99}{100}\)
\(\Leftrightarrow A>B\)