\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)

Chứng minh rằng :...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2021

b

\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+..+\frac{1}{70}\)

Ta thấy:

\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)( có 10 phân số \(\frac{1}{20}\)) = \(\frac{1}{20}\).10 = \(\frac{1}{2}\)

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)(có 10 phân số \(\frac{1}{30}\)) = \(\frac{1}{30}\).10 = \(\frac{1}{3}\)

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)( có 10 phân số \(\frac{1}{40}\)) = \(\frac{1}{40}\).10 = \(\frac{1}{4}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)( có 10 phân số \(\frac{1}{50}\)) =\(\frac{1}{50}.10=\frac{1}{5}\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)( có 10 phân số \(\frac{1}{60}\)) =\(\frac{1}{60}.10=\frac{1}{6}\)

\(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}>\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\)( có 10 phân số \(\frac{1}{70}\)\(=\frac{1}{70}.10=\frac{1}{7}\)

=> A> \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\frac{223}{140}=\frac{699}{420}>\frac{560}{420}=\frac{4}{3}\)

=> A > \(\frac{4}{3}\)

19 tháng 5 2021

có bài toán nào khó thì ib mk nha

11 tháng 4 2019

\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)

\(\Rightarrow A>\frac{1}{70}+\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\)(60 số hạng)

\(\Rightarrow A>\frac{60}{70}>\frac{60}{80}=\frac{3}{4}\)

Vậy \(A>\frac{3}{4}\left(đpcm\right)\)

11 tháng 4 2019

\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)

\(\Rightarrow A>\frac{1}{70}+...+\frac{1}{70}\)(60 số hạng)

\(\Rightarrow A>\frac{60}{70}>\frac{60}{60}=\frac{3}{4}\)

15 tháng 5 2016

Ta có C=1/11+1/12+1/13+...+1/70(có 60 số hạng)

Đặt C1+C2+C3=C

Ta có C1=1/11+1/12+1/13+...+1/30(có 20 số hạng)

          C1>1/30+1/30+...+1/30(có 20 số hạng)

          C1>20/30=2/3

Ta có C2=1/31+1/32+1/33+...+1/50(có 20 số hạng)

          C2>1/50+1/50+...+1/50(có 20 số hạng)

          C2>20/50=2/5

Ta có C3=1/51+1/52+1/53+...+1/70(có 20 số hạng)

          C3>1/70+1/70+...+1/70(có 20 số hạng)

          C3>20/70=2/7

=>C1+C2+C3>2/3+2/5+2/7

=>C>142/105>140/105=4/3

=>C>4/3

     

28 tháng 9 2017

ta có số hạng là 60 số hạng

nếu có 5 nhóm thì mỗi nhóm có 12 số hạng

=(1/11+1/12+.....+1/21+1/22)+(1/23+1/24+...+1/33+1/34)+(1/35+1/36+...+1/45+1/46)+ (1/47+1/48+....+1/56+1/57)+(1/58+1/59+1/69+1/70)

xét nhóm 1 ta có

1/11=1/11

1/11>1/12

1/11>1/13

................

1/11>1/22

xét nhóm 2 ta có

1/23=1/23

1/23>1/24

1/23>1/25

................

1/23>1/34

Xét nhóm 3 ta có

1/35=1/35

1/35>1/36

................

1/35>1/46

Xét nhóm 4 ta có

1/47=1/47

1/47>1/48

.................

1/47>1/57

Xét nhóm 5 ta có

1/58=1/58

1/58>1/59

................

1/58>1/70

Vây ta có A<1/11.12+1/23.12+1/35.12+1/47.12+1/58.12

Ta có 1/11.12+1/23.12+1/35.12+1/47.12+1/58.12<5/2

Dựa vào tính chất bắc cầu thì A<5/2

Vẫn chia 5 nhóm ta có

nhóm 1

1/11>1/22

1/12>1/22

................

1/22=1/22

Xét nhóm 2 ta có

1/23>1/34

1/24>1/34

................

1/34=1/34

Xét nhóm 3 ta có

1/35>1/46

1/34>1/46

................

1/46=1/46

Xét nhóm 4 ta có

1/47>1/57

1/48>1/57

................

1/57=1/57

Xét nhóm 5 ta có

1/58>1/70

1/59>1/70

...............

1/70=1/70

Vậy ta có A>1/22.12+1/34.12+1/46.12+1/57.12+1/70.12

mà 1/22.12+1/34.12+1/46.12+1/57.12+1/70.12>4/3

Vậy A>4/3

Vậy 4/3<A<5/2

28 tháng 9 2017

\(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{70}.\)

\(\Rightarrow A=\left(\frac{1}{11}+\frac{1}{12}+..+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+..+\frac{1}{60}\right)+..+\frac{1}{70}\)

Ta có :

\(\frac{1}{10}+...+\frac{1}{10}=1>\frac{1}{11}+\frac{1}{12}+..+\frac{1}{20}>\frac{1}{20}+..+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

\(\frac{1}{20}+..+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}>\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)

\(\frac{1}{30}+..+\frac{1}{30}=\frac{30}{30}=1>\frac{1}{31}+\frac{1}{32}+..+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+..+\frac{1}{60}=\frac{30}{60}=\frac{1}{2}\)

\(\Rightarrow1+1+\frac{1}{2}=\frac{5}{2}>A=\left(\frac{1}{11}+..+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+..+\frac{1}{60}\right)+..+\frac{1}{70}>\)

\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{4}{3}\)

\(\Rightarrow\frac{5}{2}>A>\frac{4}{3}\)

3 tháng 6 2019

HÈ RỒI ÍT  NGƯỜI LÀM LẮM

3 tháng 6 2019

VỚI LẠI LÀ KO BIẾT ĐANG HỌC LỚP 5 LÊN LỚP 6

4 tháng 3 2016

giải nhanh