K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

Ta có : b = 100...05 ( n-1 chữ số 0 ) = 999...9 ( n chữ số 9 ) + 6 = 9.111...1 ( n chữ số 1 ) + 6 = 9.a + 6

=>       a.b + 1 = a.( 9.a + 6 )

                       = 9.a2 + 6.a + 1

                       = 9.a2 + 3.a + 3.a + 1  

                       = 3.a.( 3.a + 1 ) + ( 3.a + 1 )  

                       = ( 3.a + 1 ) . ( 3.a + 1 )

                       = ( 3.a + 1 )( đpcm )

Vậy bài toán được chứng minh !

          C.ơn nx bn đã tk cho mk ♥                      

Theo đề bài ra ta có :

b = 100...05 ( n -1 chữ số 0 ) = 999...9 ( n chữ số 9) + 6 = 9 . 111...1 ( n chữ số 1 ) + 6 = 9 . a + 6

\(\Rightarrow\) a . b + 1 = a . ( 9 . a + 6 ) 

                        = 9 . a2 + 6 . a + 1 

                        = 9 . a2 + 3 . a + 3 . a + 1

                        = 3. a . ( 3 . a + 1 ) + ( 3 . a + 1 )

                        = ( 3 .  a + 1 ) . ( 3 . a + 1 )

                        = ( 3 . a + 1 )2

\(\Rightarrow\left(Đpcm\right)\)

AH
Akai Haruma
Giáo viên
27 tháng 9 2018

Lời giải:

Đặt \(\underbrace{111...1}_{2019}=a\Rightarrow 9a+1=1\underbrace{00...000}_{2019}\)

Do đó:

\(AB+1=\underbrace{111....1}_{2019}(1\underbrace{000...00}_{2019}+5)+1\)

\(=a(9a+1+5)+1=9a^2+6a+1=(3a+1)^2\)

Vậy $AB+1$ là một số chính phương.

29 tháng 9 2018

Cảm ơn bạn rất nhiều

14 tháng 10 2017

Bài này ở đâu vậy

14 tháng 10 2017

ggggggggggggggggg                   

xinlooix mk mới học lớp 5

27 tháng 1 2016

bn nhấn vào đúng 0 sẽ ra đáp án

27 tháng 1 2016

mua to

26 tháng 1 2021

đặt 5 câu sử dụng phó từ

 

26 tháng 1 2021