K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

\(A=\dfrac{x^3}{y+1}+\dfrac{y^3}{x+1}=\dfrac{x^4y}{xy+y}+\dfrac{xy^4}{xy+x}\)

\(=\dfrac{x^4}{x+1}+\dfrac{y^4}{y+1}\). Ta có BĐT phụ

\(\dfrac{x^4}{x+1}\ge\dfrac{7}{4}x-\dfrac{5}{4}\Leftrightarrow\dfrac{\left(x-1\right)^2\left(4x^2+8x+5\right)}{4\left(x+1\right)}\ge0\) (đúng)

Tương tự ta cũng có:\(\dfrac{y^4}{y+1}\ge\dfrac{7}{4}y-\dfrac{5}{4}\)

Cộng theo vế 2 BĐT trên và áp dụng BĐT AM-GM có:

\(A\ge\dfrac{7}{4}\left(x+y\right)-\dfrac{5}{4}\cdot2\ge\dfrac{7}{4}\cdot2\sqrt{xy}-\dfrac{5}{4}\cdot2=1\)

Khi \(x=y=1\)

22 tháng 8 2017

Ace Legona,làm gì đau khổ vậy , bđt phụ ở đâu ra, chứng minh rõ chút chớ

AH
Akai Haruma
Giáo viên
27 tháng 9 2023

Lời giải:

Từ $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$

$\Rightarrow xy+yz+xz=0$

Khi đó:

$x^2+2yz=x^2+yz-xz-xy=(x^2-xy)-(xz-yz)=x(x-y)-z(x-y)=(x-z)(x-y)$

Tương tự với $y^2+2zx, z^2+2xy$ thì:

$P=\frac{yz}{(x-z)(x-y)}+\frac{xz}{(y-z)(y-x)}+\frac{xy}{(z-x)(z-y)}$

$=\frac{-yz(y-z)-xz(z-x)-xy(x-y)}{(x-y)(y-z)(z-x)}=\frac{-[yz(y-z)+xz(z-x)+xy(x-y)]}{-[xy(x-y)+yz(y-z)+xz(z-x)]}=1$

AH
Akai Haruma
Giáo viên
27 tháng 4 2022

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$

AH
Akai Haruma
Giáo viên
27 tháng 4 2022

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$

2/xy<=1/x^2+1/y^2=1/2

=>xy>=4

Dấu = xảy ra khi x=y=2

(x+y)^2>=4xy>=16

=>x+y>=4

Dấu = xảy ra khi x=y=2

=>x+y+xy+2023>=2023+4+4=2031 

Dấu = xảy ra khi x=y=2

3 tháng 4 2022

Bài 3:

\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)

\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)

 

3 tháng 4 2022

-Tham khảo:

undefined

NV
9 tháng 4 2021

\(6xy=x+y\ge2\sqrt[]{xy}\Rightarrow\sqrt{xy}\ge\dfrac{1}{3}\Rightarrow xy\ge\dfrac{1}{9}\Rightarrow\dfrac{1}{xy}\le9\)

\(M=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1+\dfrac{xy+x}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{x+1}{1-xy}}{\dfrac{x+1}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{1}{1-xy}+\dfrac{1}{1+xy}}{\dfrac{1}{1-xy}-\dfrac{1}{1+xy}}\)

\(M=\dfrac{1+xy+1-xy}{1+xy-1+xy}=\dfrac{2}{2xy}=\dfrac{1}{xy}\le9\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)

A>=1/(1+xy)=1/2

Dấu = xảy ra khi x=y=1

11 tháng 2 2021

Áp dụng bđt AM-GM ta có :

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\) (do x+y+z=2) 

Vậy ....

11 tháng 2 2021

Áp dụng bđt Cô-si vào các số x,y,z dương:

\(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2}{y+z}\cdot\dfrac{y+z}{4}}=x\) 

Chứng minh tương tự :\(\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y\) , \(\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\) 

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}+\dfrac{1}{2}\left(x+y+z\right)\ge x+y+z\) 

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{1}{2}\left(x+y+z\right)=1\) 

Dấu bằng xảy ra của cả 2 cách là x=y=z=\(\dfrac{2}{3}\)