K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

32ac+b

26 tháng 8 2017

(d) qua A(5; 6) : y = mx - 5m + 6 (1) 
(C) : (x - 1)² + (y - 2)² = 1 (2) 
Thay y từ (1) vào (2) ta có phương trình hoành độ giao điểm của (d) và (C) 
(x - 1)² + (mx - 5m + 4)² = 1 
Khai triển ra pt bậc 2 : (m² + 1)x² - 2(5m² - 4m + 1)x + 25m² - 40m + 17 = 0 (*) 
Để (d) tiếp xúc (C) thì (*) phải có nghiệm kép 
∆' = (5m² - 4m + 1)² - (m² + 1)(25m² - 40m + 17) = - 4(3m² - 8m + 4) = 4(m - 2)(2 - 3m) = 0 => m = 3/2; m = 2 
KL : Có 2 đường thẳng cần tìm 
(d1) : y = (3/2)(x - 1) 
(d2) : y = 2x - 4 

∆ ∠ ∡ √ ∛ ∜ x² ⁻¹ ∫ π × ∵ ∴ | | , ⊥,∈∝ ≤ ≥− ± , ÷ ° ≠ → ∞, ≡ , ≅ , ∑,∪,¼ , ½ , ¾ , ≈ , [-b ± √(b² - 4ac) ] / 2a Σ Φ Ω α β γ δ ε η θ λ μ π ρ σ τ φ ω ё й½ ⅓ ⅔ ¼ ⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ ⁿ ₁ ₂ ₃₄₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ∊ ∧ ∏ ∑ ∠ ,∫ ∫ ψ ω Π∮ ∯ ∰ ∇ ∂ • ⇒ ♠ ★

2 tháng 12 2020

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

giả sử a>(=)b>(=)c

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
8 tháng 5 2019

Lời giải:

\(\frac{a}{(a+1)(b+1)}+\frac{b}{(b+1)(c+1)}+\frac{c}{(c+1)(a+1)}\geq \frac{3}{4}\)

\(\Leftrightarrow \frac{a(c+1)+b(a+1)+c(b+1)}{(a+1)(b+1)(c+1)}\geq \frac{3}{4}\)

\(\Leftrightarrow 4[a(c+1)+b(a+1)+c(b+1)]\geq 3(a+1)(b+1)(c+1)\)

\(\Leftrightarrow 4(ab+bc+ac+a+b+c)\geq 3[(ab+bc+ac)+(a+b+c)+abc+1]\)

\(\Leftrightarrow ab+bc+ac+a+b+c\geq 3(abc+1)=6\)

Điều này luôn đúng do theo BĐT AM-GM thì \(ab+bc+ac+a+b+c\geq 6\sqrt[6]{(abc)^3}=6\)

Ta có đpcm. Dấu "=" xảy ra khi $a=b=c=1$

15 tháng 7 2020

Vì abc = 1 nên ta hoàn toàn có thể đặt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\)

Khi đó thì \(a-1+\frac{1}{b}=\frac{x}{y}-1+\frac{z}{y}=\frac{z+x-y}{y}\)

Tương tự ta có: \(b-1+\frac{1}{c}=\frac{x+y-z}{z}\)\(c-1+\frac{1}{a}=\frac{y+z-x}{x}\)

Ta đưa điều phải chứng minh về dạng \(\left(y+z-x\right)\left(z+x-y\right)\left(x+y-z\right)\le xyz\)(*)

Đặt \(\hept{\begin{cases}y+z-x=p\ge0\\z+x-y=q\ge0\\x+y-z=r\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{q+r}{2}\\y=\frac{r+p}{2}\\z=\frac{p+q}{2}\end{cases}}\)thì (*) trở thành \(pqr\le\frac{\left(p+q\right)\left(q+r\right)\left(r+p\right)}{8}\)(Nhưng điều này đúng theo BĐT AM - GM vì \(\frac{p+q}{2}\ge2\sqrt{pq}\left(1\right);\frac{q+r}{2}\ge2\sqrt{qr}\left(2\right);\frac{r+p}{2}\ge2\sqrt{rp}\left(3\right)\), nhân theo vế của 3 BĐT (1), (2), (3), ta được điều phải chứng minh)

Đẳng thức xảy ra khi x = y = z hay a = b = c = 1

15 tháng 7 2020

Bỏ số 2 chỗ áp dụng AM - GM cho mình nha!

\(\frac{p+q}{2}\ge\sqrt{pq};\frac{q+r}{2}\ge\sqrt{qr};\frac{r+p}{2}\ge\sqrt{rp}\)

3 tháng 7 2019

\(3=a+b+c\ge3\sqrt[3]{abc}\)\(\Leftrightarrow\)\(abc\le1\)

\(VT=\frac{a^3\left(a+1\right)+b^3\left(b+1\right)+c^3\left(c+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=\frac{a^4+b^4+c^4+a^3+b^3+c^3}{a+b+c+ab+bc+ca+abc+1}\)

\(\ge\frac{\frac{\left(a^2+b^2+c^2\right)^2}{3}+\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c}}{\frac{\left(a+b+c\right)^2}{3}+5}=\frac{\frac{\frac{\left(a+b+c\right)^4}{9}}{3}+\frac{\frac{\left(a+b+c\right)^4}{9}}{3}}{8}\)

\(=\frac{\frac{\frac{3^4}{9}}{3}}{4}=\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

2 tháng 7 2019

đề viết gì thế bạn ?

28 tháng 12 2020

Đề sai. Nếu chỗ căn vế phải mà là căn bậc 3 thì t sol cho

15 tháng 11 2017

ta có: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}.\)

\(\ge3\sqrt[3]{\frac{a.b.c}{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}=\frac{3}{\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}\)    (vì abc=1)     (*)

Mặt khác: \(\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2\ge64abc=64=4^3\)   (vì abc=1)

=> \(\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}\ge4\)   (**)

Từ (*), (**)=> đpcm

12 tháng 2 2020

Bạn dưới kia làm ngược dấu thì phải,mà bài này hình như là mũ 3

\(\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)

Tương tự rồi cộng lại:

\(RHS+\frac{2\left(a+b+c\right)+6}{8}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow RHS\ge\frac{3}{4}\) tại a=b=c=1