Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Có: \(a+b+c=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)
\(\Leftrightarrow VT=4\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-2abc\left(a+b+c\right)\right]\)
\(\Leftrightarrow VT=4\left(ab\right)^2+4\left(ac\right)^2+4\left(bc\right)^2\)
Có: \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^2=c^2\Leftrightarrow2ab=c^2-a^2-b^2\)
Tương tự:...
\(VT=\text{Σ}_{cyc}\left(c^2-a^2-b^2\right)^2=2\left(a^4+b^4+c^4\right)=VP\)
Có: a + \(\frac{1}{b}\) + b + \(\frac{1}{a}\) = a + b + \(\frac{a+b}{ab}\)
Để biểu thức trên là số tự nhiên thì \(\frac{a+b}{ab}\) cũng là số tự nhiên
=> \(\left\{\begin{matrix}a+b⋮a\\a+b⋮b\end{matrix}\right.\)<=>\(\left\{\begin{matrix}b⋮a\\a⋮b\end{matrix}\right.\)<=>\(\left\{\begin{matrix}a\inƯ\left(b\right)\\a\in B\left(b\right)\end{matrix}\right.\)
<=> a = b
=> ƯCLN(a;b)=a=b=d
Ta có: \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a}+\frac{1}{a}=\frac{2}{a}\) là số tự nhiên
\(\Leftrightarrow2⋮a\Rightarrow a\le2\)
<=> 2a \(\ge\)a2
<=> a + b \(\ge\) d2 (đpcm)
CM cái sau:
Ta có: \(a+\frac{1}{a}=\frac{a}{1}+\frac{1}{a}\ge2\sqrt{\frac{a}{1}.\frac{1}{a}}=2.1=2\) (bất đẳng thức Cauchy)
Chứng minh:
\(\left(a-b\right)^2\ge0\left(\forall a,b\right)\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
(áp dụng vào cái trên)
Dấu "=" xảy ra khi:
\(a=\frac{1}{a}\Leftrightarrow a^2=1\Rightarrow a=1\left(a>0\right)\)
\(x^2+y^2+z^2+2xy+2yz+2zx+2x^2-2x\left(y+z\right)+y^2+z^2=36\)
\(\Leftrightarrow\left(x+y+z\right)^2+2x^2-2x\left(y+z\right)+y^2+z^2=36\)
\(\Rightarrow\left(x+y+z\right)^2+2x^2-2x\left(y+z\right)+\frac{1}{2}\left(y+z\right)^2\le36\)
\(\Rightarrow\left(x+y+z\right)^2+\frac{1}{2}\left[4x^2-4x\left(y+z\right)+\left(y+z\right)^2\right]\le36\)
\(\Leftrightarrow\left(x+y+z\right)^2+\frac{1}{2}\left(2x-y-z\right)^2\le36\)
\(\Rightarrow\left(x+y+z\right)^2\le36-\frac{1}{2}\left(2x-y-z\right)^2\le36\)
\(\Rightarrow-6\le x+y+z\le6\)
\(A_{min}=-6\) khi \(x=y=z=-2\)
\(A_{max}=6\) khi \(x=y=z=2\)