Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
và 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
Tổng quát: \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\) (với mọi số tự nhiên n khác 0)
Ta có: \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}<\frac{1}{2}\) (vì \(\frac{1}{100}>0\) )
=>đpcm
\(\frac{9.25-63}{9.10+153}\)=\(\frac{9.25-9.7}{9.10+9.17}\)=\(\frac{9.\left(25-7\right)}{9.\left(10+17\right)}\)=\(\frac{9.18}{9.27}\)=\(\frac{1.2}{1.3}\)=\(\frac{2}{3}\)
1/1.2+1/2.3+1/3.4+...+1/49.50
1-1/2+1/2-1/3+/13-1/4+1/4-1/5+1/5-...-1/49+1/49-1/50
1-1/50
50/50-1/50=49/50
E=1/1*2+1/2*3+1/3*4+...+1/49*50
E=1/1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50
E=1-1/50
E=49/50
ta có
1/1*2+1/2*3+1/3*4+...+1/n*(n+1)=1/1-1/2+1/2-1/3+1/3-...-1/n+1= 33/34 (quy tắc)
1 - 1/n+1=33/34
1/n+1=1/34
nên n =33
đặt \(A=\frac{2004}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}\)
\(A=\left(\frac{2003}{2}+1\right)+\left(\frac{2002}{3}+1\right)+..+\left(\frac{1}{2004}+1\right)+\frac{2005}{2005}\)
\(A=\frac{2005}{2}+\frac{2005}{3}+..+\frac{2005}{2004}+\frac{2005}{2005}\)
\(A=2005.\left(\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2004}+\frac{1}{2005}\right)\)
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2005}}{A}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2005}}{2005.\left(\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2005}\right)}=\frac{1}{2005}\)
vậy P=1/2005
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2006}\right)\)
\(A=\left(1-\frac{1}{\frac{\left(1+2\right).2}{2}}\right)\left(1-\frac{1}{\frac{\left(1+3\right).3}{2}}\right)...\left(1-\frac{1}{\frac{\left(1+2006\right).2006}{2}}\right)\)
\(A=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}...\frac{2007.2006-2}{2006.2007}=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}....\frac{2007.2006-2}{2006.2007}\) (1)
xét thấy:2007.2006-2=2006.(2008-1)+2006-2008=2006.(2008-1+1)-2008=2008.(2006-1)=2008.2005 (2)
(1),(2)\(=>A=\frac{4.1}{2.3}.\frac{5.2}{3.4}.\frac{6.3}{4.5}....\frac{2008.2005}{2006.2007}\)
\(A=\frac{\left(4.5.6...2008\right)\left(1.2.3...2005\right)}{\left(2.3.4....2006\right)\left(3.4.5...2007\right)}=\frac{2008}{2006.3}=\frac{1004}{3009}\)
Vậy A=1004/3009
\(3+\frac{1}{4+\frac{1}{b+\frac{1}{6}}}=\frac{421}{130}\) \(\Rightarrow\frac{1}{4+\frac{1}{b+\frac{1}{6}}}=\frac{31}{130}\Rightarrow4+\frac{1}{b+\frac{1}{6}}=\frac{130}{31}\Rightarrow\frac{1}{b+\frac{1}{6}}=\frac{6}{31}\Rightarrow b+\frac{1}{6}=\frac{31}{6}\Rightarrow b=\frac{30}{6}=5\)
Vậy b = 5
Q=3{1/1-1/2+1/2-1/3+...+1/4-1/5+1/20-1/21}
=3{1-1/5+1/20-1/21}
=3*337/420
=337/140
\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\)
\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\)
Suy ra: điều cần chứng minh
đặt 1/5^2+1/6^2+,,,+1/100^2=A
*chứng minh A<1/4
ta có: \(\frac{1}{5^2}=\frac{1}{5.5}<\frac{1}{4.5}\)
\(\frac{1}{6^2}=\frac{1}{6.6}<\frac{1}{5.6}\)
...
\(\frac{1}{100^2}=\frac{1}{100.100}<\frac{1}{99.100}\)
\(=>A<\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=>A<\frac{1}{4}-\frac{1}{100}<\frac{1}{4}=>A<\frac{1}{4}\left(1\right)\)
*chứng minh A>1/6
ta có \(\frac{1}{5^2}=\frac{1}{5.5}>\frac{1}{5.6}\)
\(\frac{1}{6^2}=\frac{1}{6.6}>\frac{1}{6.7}\)
...
\(\frac{1}{100^2}=\frac{1}{100.100}>\frac{1}{100.101}\)
\(=>A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
\(=>A>\frac{1}{5}-\frac{1}{101}>\frac{1}{6}=>A>\frac{1}{6}\) (2)
từ (1) và (2)=>1/6<A<1/4 hay 1/6<1/5^2+...+1/100^2<1/4(đpcm)
tick nhé
\(\frac{ab}{a+b}\) vậy cái ab là ab gạch đâu hay a.b
ab là a.b hay ab có gạch đầu?