Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
Câu hỏi của sjfdksfdkjlsjlfkdjdkfsl - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo link này.
Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc
=(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc
=ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc
=(a+b+c)(ab+ac+bc)-2abc
thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4 (1)
Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4 (2)
Tù (1) và (2)=>P chia hết cho 4
Cho P=(a+b)(b+c)(a+c)+abc
Nếu a,b,c thuộc Z và a+b+c chia hết cho 6
Chứng minh P-3abc chia hết cho 6
P - 3abc = (a+b)(b+c)(a+c)+abc - 3abc
= (a+b+c-c)(b+c)(a+c) - 2abc
= (a+b+c)(b+c)(a+c) - c(b+c)(a+c) - 2abc
= (a+b+c)(b+c)(c+a) - c(ab + bc +ac +c2) - 2abc
= (a+b+c)(b+c)(a+c) - c( ab +bc + ac +c2+ 2ab)
= (a+b+c)(b+c)(c+a) - c[(bc+c2+ac) + 3ab]
= (a+b+c)(b+c)(c+a) - c[c(b+c+a) + 3ab]
= (a+b+c)(b+c)(c+a) - c²(a+b+c) - 3abc
Ta có: a + b + c chia hết cho 6
⇒mà 6 ⋮ 2
⇒ a+b+c chia hết cho 2
⇒ a+b+c là số chẵn
⇒ trong 3 số a, b, c phải có ít nhất một số chẳn
⇒ abc ⋮ 2
⇒ 3abc ⋮ 6
mà a+b+c chia hết cho 6
⇒ (a+b+c)(b+c)(c+a) chia hết cho 6
c²(a+b+c) chia hết cho 6
⇒ (a+b+c)(b+c)(c+a) - c²(a+b+c) - 3abc chia hết cho 6
Vậy P - 3abc chia hết cho 6.