Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,b,c khác nhau đôi một nghĩa là từng cặp số khác nhau ,là:
+a khác b
+b khác c
+c khác a
\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0\)
Suy ra: \(ab==-\left(bc+ac\right)=-bc-ac\)
\(bc=-\left(ab+ac\right)=-ab-ac\)
\(ac=-\left(ab+bc\right)=-ab-bc\)
Nên \(a^2+2ab=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
Tương tự,ta cũng có: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\)
\(c^2+2ab=\left(c-a\right)\left(c-b\right)\)
Vậy \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Rightarrow ab+bc+ca=0\\ \)
\(\Rightarrow bc=-ab-ac,ca=-ab-bc,ab=-bc-ca\)
\(\Rightarrow\frac{a^2+bc}{a^2+2bc}=\frac{a^2+bc}{a^2+bc+bc}=\frac{a^2+bc}{a^2+bc-ca-ab}=\frac{a^2+bc}{\left(a-b\right).\left(a-c\right)}\)
Làm tương tự. có: \(\frac{b^2+ca}{b^2+2ca}=\frac{b^2+ca}{b^2+ca-ab-bc}=\frac{b^2+ca}{\left(a-b\right).\left(c-b\right)}\)
\(\frac{c^2+ab}{c^2+2ab}=\frac{c^2+ab}{c^2+ab-ca-bc}=\frac{c^2+ab}{\left(b-c\right).\left(a-c\right)}\)
\(\Rightarrow A=\frac{a^2+bc}{\left(a-b\right).\left(a-c\right)}+\frac{b^2+ca}{\left(a-b\right).\left(c-b\right)}+\frac{c^2+ab}{\left(b-c\right).\left(a-c\right)}\)
\(=\frac{\left(a^2+bc\right).\left(b-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}-\frac{\left(b^2+ca\right).\left(a-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}+\frac{\left(c^2+ab\right).\left(a-b\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}\)
Sau đó bạn thực hiện tiếp nhé.
Bài 1: Cho \(a,b,c\ge0:a^2+b^2+c^2=3\). CMR: \(a^4b^4+b^4c^4+c^4a^4\le3\)
Bài 2: Cho \(a,b,c\ge0\). CMR: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)
Bài 3: Cho \(a,b,c\ge0:a^2+b^2+c^2=a+b+c\). CMR: \(a^2b^2+b^2c^2+c^2a^2\le ab+bc+ca\)
Bài 4: Cho \(a,b,c\ge0\). CMR: \(4\left(a+b+c\right)^3\ge27\left(ab^2+bc^2+ca^2+abc\right)\)
Bài 5: Cho \(a,b,c\ge0:a+b+c=3\).CMR: \(\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}+\frac{1}{2ab^2+1}\ge1\)
Câu này lớp 7 tớ có làm. Cũng như cái mà gọi là áp dụng t/c dãy tỉ số bằng nhau và tỉ lệ thức. mình tính ra dc a, b. c rồi.
Ta có: \(a^2+b^2+c^2=\left(a+b+c\right)^2\)
\(\Leftrightarrow ab+bc+ca=0\)
Ta có: \(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
\(=\frac{1}{a^2+2bc-ab-bc-ca}+\frac{1}{b^2+2ca-ab-bc-ca}+\frac{1}{c^2+2ab-ab-bc-ca}\)
\(=\frac{1}{a^2+bc-ca-ab}+\frac{1}{b^2+ca-ab-bc}+\frac{1}{c^2+ab-bc-ca}\)
\(=-\left(\frac{1}{\left(a-b\right)\left(c-a\right)}+\frac{1}{\left(b-c\right)\left(a-b\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)}\right)\)
\(=-\frac{b-c+c-a+a-b+}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
PS: Hồi tối lười để người khác làm mà không ai làm thôi t làm vậy
( a+b+c)^2 = a^2 + b^2 + c^2
=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = a^2 + b^2 + c^2
=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ac - a^2 - b^2 - c^2 = 0
=> 2ab + 2bc + 2ac = 0
ta có
A = \(\frac{1}{a^2+2bc}\)+ \(\frac{1}{b^2+2ac}\)+ \(\frac{1}{c^2+2ab}\)
= \(\frac{1}{a^2+2bc}\)+ \(\frac{1}{b^2+2ac}\)+ \(\frac{1}{c^2+2ab}\) + 2ab + 2bc + 2ac
đến đây bạn nhóm lại nhé mk giải ra thì dài lắm nên chỉ gợi ý cho bn đấy đây thôi