K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2019

Với đk a, b,c khác 0

a+b+c=1<=> a+b=1-c

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow bc+ac+ba=abc\Leftrightarrow c\left(b+a\right)+ab\left(1-c\right)=0\)

<=> \(c\left(1-c\right)+ab\left(1-c\right)=0\Leftrightarrow\left(1-c\right)\left(c+ab\right)=0\Leftrightarrow\left(1-c\right)\left(1-a-b+ab\right)=0\)

<=>\(\left(1-c\right)\left[\left(1-a\right)-b\left(1-a\right)\right]=0\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)=0\Leftrightarrow\)a=1 hoặc b=1 hoặc c=1

21 tháng 4 2017

giai ho minh voi

11 tháng 8 2018

Ta có :  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\)

\(\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)( do a + b + c = 2017 )

\(\Rightarrow\left(a+b+c\right)\left(bc+ac+ab\right)=abc\)

\(\Leftrightarrow\left(bc+ac\right)\left(a+b+c\right)+ab\left(a+b\right)+abc-abc=0\)

\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[b\left(c+a\right)+c\left(c+a\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Ta có : hoặc a+b =0

            hoặc b+c =0

           hoặc c+a = 0 

Mà  \(a+b+c=2017\)

\(\Rightarrow\)hoặc a = 2017; hoặc b = 2017 ; hoặc c = 2017

Vậy ...

14 tháng 3 2018

Thay a+b+c=2017 vào \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\)  ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Rightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)\(\Rightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)\(\Rightarrow\left(a+b\right)\left(\frac{c\left(a+b+c\right)+ab}{abc\left(a+b+c\right)}\right)=0\)

\(\Rightarrow\left(a+b\right)\left(\frac{c\left(b+c\right)+ca+ab}{abc\left(a+b+c\right)}\right)=0\)

\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+ca+ab\right]=0\)

\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+a\left(b+c\right)\right]=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow\)\(a+b=0\) hoặc \(b+c=0\) hoặc \(c+a=0\)

\(\Rightarrow\)\(c=2017\)hoặc \(a=2017\) hoặc \(b=2017\left(đpcm\right)\)

9 tháng 11 2019

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{2019}\)

\(\Leftrightarrow2019\left(ab+bc+ac\right)=abc\)

\(\Leftrightarrow2019\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc\right)+ac\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow b\left(a+b+c\right)\left(a+c\right)+ca\left(a+c\right)=0\)

\(\Leftrightarrow\left(ab+b^2+bc+ac\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

Suy ra a + b = 0 hoặc b + c = 0 hoặc a + c = 0

Mà a + b + c = 2019 nên phải có 1 trong ba số a,b,c bằng 2019 (đpcm)

7 tháng 8 2020

Vào trang cá nhân của mình đi, có cái này hay lắm, nhớ kb vs mình nha

4 tháng 1 2018

Ta có 1/a + 1/b + 1/c = (bc + ac + ac)/abc = ab + bc + ca 
=> a + b + c = ab + bc + ca 
<=> a + b + c - ab - bc - ca = 0 
<=> a + b + c - ab - bc - ac + abc - 1 = 0 
<=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0 
<=> -a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0 
<=> (b - 1)(-a + 1 -c + ac) = 0 
<=> (b - 1)[ (-a + 1) + (ac - c) ] = 0 
<=> (b - 1)[ -(a - 1) + c(a - 1) ] = 0 
<=> (a - 1)(b - 1)(c - 1) = 0 
<=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0 
<=> a = 1 hoặc b = 1 hoặc c = 1 
 

4 tháng 1 2018

Từ abc=1=>c=1/ab

Và a+b+c=1/a+1/b+1/c

<=>a+b+1/ab=1/a+1/b+ab

<=>ab-a-b+1-(1/ab-1/a-1/b+1)=0

<=>a(b-1)-(b-1)-1/a(1/b-1)-(1/b-1)=0

<=>(b-1)(a-1)-(1/b-1)(1/a-1)=0

<=>(a-1)(b-1)-(1-b/b)(1-a/a)=0

<=>(a-1)(b-1)-(a-1)(b-1)/ab=0

<=>(a-1)(b-1)(1-1/ab)=0

<=>(a-1)(b-1)(c-1)=0

<=>a-1=0 hoặc b-1=0 hoặc c-1=0

=>a=1 hoặc b=1 hoặc c=1 (đpcm)

30 tháng 11 2016

Bài này mà không làm đc đốt sách đê 

30 tháng 11 2016

ê cu vô cái link này nè http://olm.vn/hoi-dap/question/94896.html tui vừa chép xong 

ooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooo

6 tháng 11 2016

Có a+b+c=2000 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2000}\)

Suy ra: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

               \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

                \(\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

                 \(\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)

                   \(\left(a+b\right)\left(\frac{c\left(a+b+c\right)+ab}{abc\left(a+b+c\right)}\right)=0\)

                       \(\left(a+b\right)\left(\frac{ac+bc+c^2+ab}{abc\left(a+b+c\right)}\right)=0\)

                         \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc\left(a+b+c\right)}=0\)

                          \(\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

  Mà a+b+c=2000

Với a+b=0 thì c=20000

Với b+c=0 thì a=2000

Với a+c=0 thì b=2000

Vậy trong 3 số a,b,c thì phải có 1 số bằng 2000