Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ap dông B§T C-S ta cã:
\(\frac{a}{a+\sqrt{2016a+bc}}=\frac{a}{a+\sqrt{\left(a+b+c\right)a+bc}}=\frac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\)
\(\le\frac{a}{a+\sqrt{\left(\sqrt{ab}+\sqrt{ac}\right)^2}}=\frac{a}{a+\sqrt{ab}+\sqrt{ac}}\)
\(=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\). Tuong tù ta cx cã:
\(\frac{b}{b+\sqrt{2016b+ca}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};\frac{c}{c+\sqrt{2016c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Céng theo vÕ c¸c B§T trªn ta dc:
\(VT\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
P/s:may mk bi loi Unikey r` mk dg ban chua kip chinh lai bn gang doc
Áp dụng BĐT Cauchy-Schwarz:
$\frac{a}{a+\sqrt{2016a + bc}}=\frac{a}{a+\sqrt{(a+b+c)a + bc}} =\frac{a}{a+\sqrt{(a+b)(c+a)}} \leq \frac{a}{a+\sqrt{(\sqrt{ab}+\sqrt{ac})^{2}}}=\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}$
$\Rightarrow \frac{a}{a+\sqrt{2016a + bc}} + \frac{b}{b+\sqrt{2016b + ca}} + \frac{c}{c+\sqrt{2016c + ab}}\leq \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1$
...............................
Ta có \(c+ab=\left(a+b+c\right)c+ab=ab+bc+c^2-ab=\left(a+c\right)\left(b+c\right)\)
Tương tự có \(a+bc=\left(b+a\right)\left(c+a\right)\)
\(b+ca=\left(b+c\right)\left(a+b\right)\)
Khi đó : \(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(b+a\right)\left(c+a\right)}}+\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}\)
Áp dụng BĐT AM-GM ta có
\(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)
\(\sqrt{\frac{bc}{\left(b+a\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{c}{c+a}\right)\)
\(\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{a+b}\right)\)
Cộng theo vế các bất đẳng thức cùng chiều
\(P\le\frac{1}{2}\left(\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{b+a}{b+a}\right)=\frac{3}{2}\)
Vậy \(Max_P=\frac{3}{2}\)khi \(a=b=c=\frac{1}{3}\)
\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{c^2+ab+bc+ca}}\)
\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Tương tự cho 2 BĐT còn lại r` cộng vào nhé
Ta có \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)
=> \(\frac{1}{\sqrt{a^2-ab+b^2}}\le\frac{1}{\frac{1}{2}\left(a+b\right)}=\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Chứng minh tương tự, rồi cộng lại, ta có
A\(\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
dấu = xảy ra <=> a=b=c=1
^_^
Ta có : \(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{bc+a.abc}}=\frac{a}{\sqrt{bc+a\left(a+b+c\right)}}\)
\(=\frac{a}{\sqrt{bc+a^2+ab+ac}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng bđt Cô-si ngược ta có
\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
C/m tương tự được \(\frac{b}{\sqrt{ca\left(1+b^2\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)
\(\frac{c}{\sqrt{ab\left(1+c^2\right)}}\le\frac{1}{2}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)
Cộng 3 vế của các bđt trên lại ta được
\(A\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{a}{a+c}+\frac{c}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)\)
\(=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b+c=abc\\a=b=c\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=a^3\\a=b=c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^3-3a=0\\a=b=c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a\left(a^2-3\right)=0\\a=b=c\end{cases}}\)
\(\Leftrightarrow a=b=c=\sqrt{3}\left(a,b,c>0\right)\)
Vậy \(A_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\sqrt{3}\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)