Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(t=ab+bc+ca\)
\(=>t=ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=3\)
mặt khác
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(=>a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\)
khi đó
\(P=\frac{9-2t}{t}\)(zới t nhỏ hơn hoặc = 3)
xét \(f\left(t\right)=\frac{9-2t}{t}\left(t\le3\right)\)
\(f'\left(t\right)=-\frac{9}{t^2}< 0\)
=> f(t) N Biến \(\left(-\infty,3\right)\)
min f(t)=f(3)=1
koo tồn tại max\(f\left(t\right)\)
zậy minP=1 khi a=b=c=1
Cho phép mình giải max bài này ạ:
Ta có:
\(\sqrt{2a+bc}=\sqrt{\left(a+b+c\right)a+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\overset{cosi}{\le}\dfrac{a+b+a+c}{2}\)
Tương tự: \(\sqrt{2b+ac}\le\dfrac{b+c+b+a}{2};\sqrt{2c+ab}\le\dfrac{c+a+c+b}{2}\)
\(\Rightarrow Q\le\dfrac{4\left(a+b+c\right)}{2}=2\left(a+b+c\right)=4\)
Dấu = xảy ra \(\Leftrightarrow a=b=c=\dfrac{2}{3}\)
Cho a,b,c là các số thực dương:
Chứng minh rằng: a2+b2+c2+2abc+1≥2(ab+bc+ca)a2+b2+c2+2abc+1≥2(ab+bc+ca)
Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bb và cc.
Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a
Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1
Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)
⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)
Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.
2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)
Áp dụng BĐT AM-GM ta có:
\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)
\(S=\frac{17}{4}\Leftrightarrow a=4\)
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?
\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)
\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)
Dấu "=" xảy ra khi a = 4
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
\(\left(\frac{a}{c}+1\right)\left(\frac{b}{c}+1\right)=4\)
Đặt \(\left(\frac{a}{c};\frac{b}{c}\right)=\left(x;y\right)\Rightarrow xy+x+y=3\)
\(\Rightarrow3\le x+y+\frac{1}{4}\left(x+y\right)^2\Rightarrow x+y\ge2\)
\(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)
\(P=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{2\left(x+y\right)+12}+\frac{3-\left(x+y\right)}{x+y}=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{2\left(x+y\right)+12}+\frac{3}{x+y}-1\)
Đặt \(x+y=t\Rightarrow2\le t< 3\)
\(\Rightarrow P=\frac{t^2+5t-6}{2t+12}+\frac{3}{t}-1=\frac{t}{2}+\frac{3}{t}-\frac{1}{2}\ge2\sqrt{\frac{3t}{2t}}-\frac{1}{2}=\frac{\sqrt{6}-1}{2}\)
Dấu "=" xảy ra khi \(t=\sqrt{6}\)
\(P=\frac{t^2+6}{2t}-\frac{5}{2}+2=\frac{1}{2}\left(\frac{t^2-5t+6}{2t}\right)+2=\frac{\left(t-2\right)\left(t-3\right)}{2t}+2\)
Mà \(2\le t< 3\Rightarrow\left(t-2\right)\left(t-3\right)\le0\)
\(\Rightarrow P\le2\Rightarrow P_{max}=2\) khi \(t=2\)
\(P=\frac{a^2}{a^3+abc}+\frac{b^2}{b^3+abc}+\frac{c^2}{c^3+abc}.\) " nhân cả tử cả mẫu cho a , b , c lần lượt
\(\frac{a^2}{a^3+abc}\le\frac{1}{4}\left(\frac{a^2}{a^3}+\frac{a^2}{abc}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{a}{bc}\right)\left(cosishaw\right)\)
\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\)
từ đề bài ta suy ra
\(bc=\frac{a^2+B^2+c^2}{a};ac=\frac{a^2+B^2+c^2}{b};ab=\frac{a^2+b^2+c^2}{c}.\)
\(\frac{a}{bc}=\frac{a}{\frac{a^2+B^2+c^2}{a}}=\frac{a^2}{a^2+B^2+c^2}\)
\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}\right)\)
\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right)\)
từ đề bài suy ra tiếp
\(a=\frac{a^2+b^2+c^2}{bc};\frac{1}{a}=\frac{1}{\frac{a^2+b^2+c^2}{bc}}=\frac{bc}{a^2+B^2+c^2}\) " tương tự với các số hạng
suy ra
\(P\le\frac{1}{4}\left(\frac{bc+ac+Ab}{a^2+b^2+c^2}+1\right)\)
\(bc+ac+ab\le a^2+B^2+c^2\left(cosi\right)\)
\(P\le\frac{1}{4}\left(1+1\right)=\frac{1}{2}\)
max của P là 1/2
dấu = xảy ra khi a=b=c=3
thử thay vào ta được
\(\frac{a}{a^2+a^2}+\frac{a}{a^2+a^2}+\frac{a}{a^2+a^2}=\frac{a}{2a^2}+\frac{a}{2a^2}+\frac{a}{2a^2}=\frac{3}{2a}=\frac{3}{2.3}=\frac{1}{2}\) " đúng "
sửa lại cái đề bài thành \(a^2+b^2+c^2=abc\) đi
không bọn não chó nó tích sai cho tao đấy dcmmm
bọn ngu học :)
Ta đặt:
\(\left\{{}\begin{matrix}x=a-1\\y=b-2\\z=c-3\end{matrix}\right.\)
\(\Rightarrow x+y+z=3\) và \(x,y,z\ge0\) (*)
Biểu thứ P trở thành:
\(P=\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Từ (*) dễ thấy:
\(\left\{{}\begin{matrix}0\le x\le3\\0\le y\le3\\0\le z\le3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\le x\le\sqrt{3x}\\0\le y\le\sqrt{3y}\\0\le z\le\sqrt{3z}\end{matrix}\right.\)
Do đó:
\(P\ge\dfrac{x+y+z}{\sqrt{3}}=\sqrt{3}\)
Dầu "=" xảy ra khi \(\left(a;b;c\right)=\left(3;0;0\right)=\left(0;3;0\right)=\left(0;0;3\right)\)
Tìm min:
Theo BĐT AM-GM thì: P=a2+b2+c2≥ab+bc+acP=a2+b2+c2≥ab+bc+ac hay P≥9P≥9
Vậy Pmin=9Pmin=9. Giá trị này đạt tại a=b=c=√3a=b=c=3
-----------
Tìm max:
P=a2+b2+c2=(a+b+c)2−2(ab+bc+ac)=(a+b+c)2−18P=a2+b2+c2=(a+b+c)2−2(ab+bc+ac)=(a+b+c)2−18
Vì a,b,c≥1a,b,c≥1 nên:
(a−1)(b−1)≥0⇔ab+1≥a+b(a−1)(b−1)≥0⇔ab+1≥a+b
Hoàn toàn tương tự: bc+1≥b+c;ac+1≥a+cbc+1≥b+c;ac+1≥a+c
Cộng lại: 2(a+b+c)≤ab+bc+ac+3=122(a+b+c)≤ab+bc+ac+3=12
⇒a+b+c≤6⇒a+b+c≤6
⇒P=(a+b+c)2−18≤62−18=18⇒P=(a+b+c)2−18≤62−18=18
Vậy Pmax=18Pmax=18. Giá trị này đạt tại (a,b,c)=(1,1,4)(a,b,c)=(1,1,4) và hoán vị