Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
\(\sum\dfrac{a}{\sqrt{ab+b^2}}=\sum\dfrac{a\sqrt{2}}{\sqrt{2b\left(a+b\right)}}\ge\sum\dfrac{2\sqrt{2}a}{2b+a+b}=2\sqrt{2}\sum\dfrac{a}{a+3b}\)
\(=2\sqrt{2}\sum\dfrac{a^2}{a^2+3ab}\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\)
\(=\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+ab+bc+ca}\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{3\sqrt{2}}{2}\)
BĐT <=> (nhân cả 2 vế với căn 12)
\(\sqrt{\left(1+1+4\right)\left(2a^2+2ab+2b^2\right)}+...\ge\sqrt{3.2.\left(1+1+4\right)}=6\)
có : 2a^2 +2ab + 2b^2 = a^2 + (a+b)^2 + b^2
=> (a^2 + (a+b)^2 + b^2)(1+4+1) ≥ (a+2a+2b+b)^2 ( theo bđt cauchy-schwarz 2 bộ số)
=> căn[(a^2 + (a+b)^2 + b^2)(1+4+1)] ≥ 3a+3b
CMTT với 2 cái căn còn lại
=> VT ≥ 6(a+b+c) = 6 = VP (đpcm)
dấu bằng a=b=c=1/3
\(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ca+a^2}\)
\(=\sqrt{\frac{1}{4}\left(a-b\right)^2+\frac{3}{4}\left(a+b\right)^2}+\sqrt{\frac{1}{4}\left(b-c\right)^2+\frac{3}{4}\left(b+c\right)^2}+\sqrt{\frac{1}{4}\left(c-a\right)^2+\frac{3}{4}\left(c+a\right)^2}\)
\(\ge\sqrt{\frac{3}{4}\left(a+b\right)^2}+\sqrt{\frac{3}{4}\left(b+c\right)^2}+\sqrt{\frac{3}{4}\left(c+a\right)^2}\)
\(=\sqrt{3}\left(a+b+c\right)\)
Ta có bất đẳng thức phụ sau
\(a^2+ab+b^2\ge\frac{3}{4}.\left(a+b\right)^2\) (Chứng minh thì biến đổi tương đương là được)
Ta có :
\(\Sigma\sqrt{a^2+ab+b^2}\ge\Sigma\sqrt{\dfrac{3}{4}\left(a+b\right)^2}=\sqrt{3}.\Sigma\dfrac{a+b}{2}=\sqrt{3}\left(a+b+c\right)\)
Đẳng thức xảy ra <=> a = b = c
Với \(a,b,c\ge0\). Khi đó ta có
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{a^2+b^2+c^2}{ab+bc+ca}\)
Chứng minh: \(\left(ab+bc+ca\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a^2+b^2+c^2+abc\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge a^2+b^2+c^2\)\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{a^2+b^2+c^2}{ab+bc+ac}\)
Với \(a,b,c\ge0\) ta có
\(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(b+a\right)\left(c+a\right)}}+\sqrt{\frac{ca}{\left(c+b\right)\left(c+a\right)}}\ge1\)
Áp dụng bất đẳng thức AM-GM ta có:
\(\Sigma\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}=\Sigma\sqrt{\frac{ab\left(2ab+2bc+2ac\right)^2}{4\left(a+c\right)\left(b+c\right)\left(ab+bc+ca\right)^2}}\)
\(\ge\Sigma\sqrt{\frac{ab\left[a\left(b+c\right)+b\left(a+c\right)\right]^2}{4\left(a+c\right)\left(b+c\right)\left(ab+bc+ac\right)^2}}\)
\(\ge\Sigma\sqrt{\frac{ab.4a\left(b+c\right)b\left(a+c\right)}{4\left(a+c\right)\left(b+c\right)\left(ab+bc+ca\right)^2}}=\Sigma\frac{ab}{ab+bc+ca}\)
Từ đó ta có \(\Sigma\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\ge\frac{ab+bc+ca}{ab+bc+ca}=1\)
chứng minh bài toán:
Đặt \(\sqrt{\frac{a^2+b^2+c^2}{ab+bc+ac}}=t\ge1\)
Ta có: \(\left(\Sigma\sqrt{\frac{a}{b+c}}\right)^2=\Sigma\frac{a}{b+c}+2\Sigma\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\ge\frac{a^2+b^2+c^2}{ab+bc+ac}+2=t^2+2\)
Từ đây ta chứng minh \(\sqrt{t^2+2}+\frac{3\sqrt{3}}{t}\ge\frac{7\sqrt{2}}{2}\)
Áp dụng bất đẳng thức bunhiacopxki ta có:
\(\sqrt{t^2+2}+\frac{3\sqrt{3}}{t}=\frac{\sqrt{\left(t^2+2\right)\left(6+2\right)}}{2\sqrt{2}}+\frac{3\sqrt{3}}{t}\ge\frac{t\sqrt{6}+2}{2\sqrt{2}}+\frac{3\sqrt{3}}{t}=\left(\frac{t\sqrt{3}}{2}+\frac{3\sqrt{3}}{t}\right)+\frac{\sqrt{2}}{2}\)
Áp dụng bất đẳng thức Cauchy ta đc:
\(\left(\frac{t\sqrt{3}}{2}+\frac{3\sqrt{3}}{t}\right)+\frac{\sqrt{2}}{2}\ge3\sqrt{2}+\frac{\sqrt{2}}{2}=\frac{7\sqrt{2}}{2}\)
Vậy ta có đpcm