\(a,b,c,d\inℤ\)t/m \(1\le a< b< c< d\le50\). CMR...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2020

Do \(a\ge1,d\le50\left(and\right)c>b\left(c,b\in N\right)nên\left(c\ge b+1\right)\)thành thử

\(S=\frac{a}{b}+\frac{c}{d}\ge\frac{1}{b}+\frac{b+1}{50}=\frac{b^2+b+50}{50b}\)

zậy BĐT của đề ra đc CM 

dấu = xảy ra khi \(\hept{\begin{cases}a=1\\d=50\\c=b+1\end{cases}.}\)

ĐỂ tìm minS ta đặt

\(\frac{b^2+b+50}{50b}=\frac{b}{50}+\frac{1}{b}+\frac{1}{50}\)zà xét hàm số có biến số liên tục x 

\(f\left(x\right)=\frac{x}{50}+\frac{1}{x}+\frac{1}{50}\left(2\le x\le48\right)\)

\(f'\left(x\right)=\frac{1}{50}-\frac{1}{x^2}=\frac{x^2-50}{50x^2};f'\left(x\right)=0\hept{\begin{cases}x^2=50\\2\le x\le48\end{cases}\Leftrightarrow x=5\sqrt{2}}\)

Ta có bảng biến thiên 

x     2         \(5\sqrt{2}\)  48
f'(x)     -          0      +
f(x)\(\rightarrow\)minf(x )     )\(\rightarrow\)

chuyển zế biểu thức 

\(f\left(b\right)=\frac{b^2+b+50}{50b}\left(2\le b\le48,b\in N\right)\)

từ BBT suy ra b biến thiên từ 2 đến 7 , f(b) giảm rồi chuyển sang tăng khi b biến thiên  từ 8 đến 48 . suy ra minf(b) = min[f(7) ;f(8)]

ta có 

\(\hept{\begin{cases}f\left(7\right)=\frac{49+57}{350}=\frac{53}{175}\\f\left(8\right)=\frac{64+58}{400}=\frac{61}{200}>\frac{53}{175}\end{cases}}\)

zậy min S = 53/175 khi a=1 , b=7 , c=8 , d=50\

nguồn đại học học 2002 dự bị 5

7 tháng 9 2019

Làm bài này một hồi chắc bay não:v

Bài 1:

a) Áp dụng BĐT AM-GM:

\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b = c.

b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.

Bài 2:

a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v

b) Theo BĐT Bunhicopxki:

\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)

Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)

Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:

\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)

7 tháng 9 2019

Nói trước là bài 3 em không chắc, tự dưng thấy tại sao lại có đk \(\left|x\right|< 1;\left|y\right|< 1?!?\) Chẳng lẽ lời giải của em sai hay là đề thừa?

16 tháng 2 2019

1, Áp dụng bất đẳng thức Cô-si cho 2 số dương ta được

\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\)

\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng từng vế vào ta được 

\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu "=" khi a = b = c

16 tháng 2 2019

2,Vì a,b,c là 3 cạnh của tam giác nên a,b,c > 0 

Ta có các bđt quen thuộc sau : \(\frac{m}{n}>\frac{m}{m+n}\)và \(\frac{m}{n}< \frac{m+m}{m+n}\)

\(\Rightarrow\frac{m}{m+n}< \frac{m}{n}< \frac{m+m}{m+n}\). Áp dụng bđt này ta được 

\(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)

\(\frac{b}{a+b+c}< \frac{b}{a+b+c}< \frac{b+b}{a+b+c}\)

\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)

Cộng 3 bđt trên lại ta được đpcm

NV
15 tháng 6 2020

1.

TH1: nếu trong 3 số có ít nhất 1 số bằng 0, không mất tính tổng quát, giả sử đó là a \(\Rightarrow b+c=0\Rightarrow b=-c\)

\(\Rightarrow a^{2011}+b^{2011}+c^{2011}=0+b^{2011}+\left(-b\right)^{2011}=0< 2\) (thỏa mãn)

TH2: nếu cả 3 số đều khác 0 \(\Rightarrow\) trong 3 số tồn tại ít nhất 1 số âm, giả sử đó là a

\(\Rightarrow a^{2011}< 0\)

Mặt khác do \(-1\le b\le1\Rightarrow b^{2011}\le\left|b\right|^{2011}\le1\)

Tương tự: \(c^{2011}\le1\)

\(\Rightarrow a^{2011}+b^{2011}+c^{2011}\le a^{2011}+1+1\le a^{2011}+2< 2\) (đpcm)

2.

\(\Leftrightarrow\frac{2\left(x-5\right)+10}{x-5}-\frac{3}{x-1}< 2\)

\(\Leftrightarrow2+\frac{10}{x-5}-\frac{3}{x-1}< 2\Leftrightarrow\frac{10}{x-5}-\frac{3}{x-1}< 0\)

\(\Leftrightarrow\frac{10x-10-3x+15}{\left(x-5\right)\left(x-1\right)}< 0\Leftrightarrow\frac{7x+5}{\left(x-5\right)\left(x-1\right)}< 0\)

\(\Rightarrow\left[{}\begin{matrix}x< -\frac{5}{7}\\1< x< 5\end{matrix}\right.\)

2 tháng 11 2017

ai trả lời nhiều tớ sẽ dùng 4 nick k cho nha cảm ơn

24 tháng 8 2016

a)Do bd>0 (do b>0, d>0) nên nếu \(\frac{a}{b}< \frac{c}{d}\) thì ad<bc

b)Ngược lại, nếu ad<bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)

18 tháng 3 2020

Ta khai triển VT trước

\(VT=\frac{1-b-c+bc}{b+c}+\frac{1-c-a+ca}{c+a}+\frac{1-a-b+ab}{a+b}=\frac{\left(1-b\right)-c\left(1-b\right)}{1-a}+\frac{\left(1-c\right)-a\left(1-c\right)}{1-b}+\frac{\left(1-a\right)-b\left(1-a\right)}{1-c}=\frac{\left(1-c\right)\left(1-b\right)}{1-a}+\frac{\left(1-c\right)\left(1-a\right)}{1-b}+\frac{\left(1-a\right)\left(1-b\right)}{1-c}\)Với a,b,c luôn dương vào a+b+c=1 nên a,b,c<1\(\Rightarrow\)1-a,1-b,1-c>0

Áp dụng Cosi có \(\frac{\left(1-c\right)\left(1-b\right)}{1-a}+\frac{\left(1-c\right)\left(1-a\right)}{1-b}\ge2\left(1-c\right)\left(1\right)\).Tương tự: \(\frac{\left(1-c\right)\left(1-a\right)}{1-b}+\frac{\left(1-a\right)\left(1-b\right)}{1-c}\ge2\left(1-a\right)\left(2\right)\)

\(\frac{\left(1-c\right)\left(1-b\right)}{1-a}+\frac{\left(1-a\right)\left(1-b\right)}{1-c}\ge2\left(1-b\right)\left(3\right)\)

Cộng (1),(2) và (3) có \(2VT\ge2\left(3-a-b-c\right)\Leftrightarrow VT\ge3-1=2\)

17 tháng 3 2020

é,đề bài thiếu nha,phải là

\(\frac{a+bc}{b+c}\)+\(\frac{b+ac}{a+c}\)+\(\frac{c+ab}{a+b}\) ≥2

4 tháng 8 2016

Ta có:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\) 

                                              \(>\frac{a+b+c}{a+b+c}=1\left(1\right)\)

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)

                                                    \(< \frac{2.\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

Từ (1) và (2) => đpcm

4 tháng 8 2016

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{a+c}>\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a+b+c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>1\)

Ta luôn có phân số \(\frac{m}{n}< \frac{m+z}{n+z}\)với  \(m>n>0;z>0\)

\(\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)

\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c+b+c+a+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Vậy \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)